This commit is contained in:
chefyuan 2021-03-18 09:35:29 +08:00
parent d9459bcf6d
commit 0fb20ccfca
2 changed files with 215 additions and 0 deletions

View File

@ -0,0 +1,69 @@
### **leetcode 523 连续的子数组和**
**题目描述**
> 给定一个包含 非负数 的数组和一个目标 整数 k编写一个函数来判断该数组是否含有连续的子数组其大小至少为 2且总和为 k 的倍数,即总和为 n*k其中 n 也是一个整数。
**示例 1**
> 输入:[23,2,4,6,7], k = 6
> 输出True
解释:[2,4] 是一个大小为 2 的子数组,并且和为 6。
**示例 2**
> 输入:[23,2,6,4,7], k = 6
> 输出True
解释:[23,2,6,4,7]是大小为 5 的子数组,并且和为 42。
**前缀和 + HashMap**
这个题目算是对刚才那个题目的升级,前半部分是一样的,都是为了让你找到能被 K 整除的子数组,但是这里加了一个限制,那就是子数组的大小至少为 2那么我们应该怎么判断子数组的长度呢我们可以根据索引来进行判断见下图。
![微信截图_20210115174825](https://cdn.jsdelivr.net/gh/tan45du/github.io.phonto2@master/myphoto/微信截图_20210115174825.7fv366wnz000.png)
此时我们 K = 6, presum % 6 = 4 也找到了相同余数的前缀子数组 [0,1] 但是我们此时指针指向为 2我们的前缀子区间 [0,1]的下界为1所以 2 - 1 = 1但我们的中间区间的长度小于2所以不能返回 true需要继续遍历那我们有两个区间[0,1],[0,2]都满足 presum % 6 = 4那我们哈希表中保存的下标应该是 1 还是 2 呢我们保存的是1如果我们保存的是较大的那个索引则会出现下列情况见下图。
![微信截图_20210115175122](https://cdn.jsdelivr.net/gh/tan45du/github.io.phonto2@master/myphoto/微信截图_20210115175122.19vnfs51amjk.png)
此时,仍会显示不满足子区间长度至少为 2 的情况,仍会继续遍历,但是我们此时的 [2,3]区间已经满足该情况,返回 true所以我们往哈希表存值时只存一次即最小的索引即可。下面我们看一下该题的两个细节
细节1我们的 k 如果为 0 时怎么办,因为 0 不可以做除数。所以当我们 k 为 0 时可以直接存到数组里,例如输入为 [0,0] , K = 0 的情况
细节2另外一个就是之前我们都是统计个数value 里保存的是次数,但是此时我们加了一个条件就是长度至少为 2保存的是索引所以我们不能继续 map.put(0,1),应该赋初值为 map.put(0,-1)。这样才不会漏掉一些情况,例如我们的数组为[2,3,4],k = 1,当我们 map.put(0,-1) 时,当我们遍历到 nums[1] 即 3 时,则可以返回 true因为 1--1= 25 % 1=0 , 同时满足。
**视频解析**
![leetcode 523 连续的子数组和](https://cdn.jsdelivr.net/gh/tan45du/github.io.phonto2@master/myphoto/leetcode 523 连续的子数组和.1dgqjn0e8we8.gif)
**题目代码**
```java
class Solution {
public boolean checkSubarraySum(int[] nums, int k) {
HashMap<Integer,Integer> map = new HashMap<>();
//细节2
map.put(0,-1);
int presum = 0;
for (int i = 0; i < nums.length; ++i) {
presum += nums[i];
//细节1防止 k 为 0 的情况
int key = k == 0 ? presum : presum % k;
if (map.containsKey(key)) {
if (i - map.get(key) >= 2) {
return true;
}
//因为我们需要保存最小索引,当已经存在时则不用再次存入,不然会更新索引值
continue;
}
map.put(key,i);
}
return false;
}
}
```

View File

@ -0,0 +1,146 @@
### leetcode560. 和为K的子数组
**题目描述**
> 给定一个整数数组和一个整数 k你需要找到该数组中和为 k 的连续的子数组的个数。
**示例 1 :**
> 输入:nums = [1,1,1], k = 2
> 输出: 2 , [1,1] 与 [1,1] 为两种不同的情况。
**暴力法**
**解析**
这个题目的题意很容易理解,就是让我们返回和为 k 的子数组的个数,所以我们直接利用双重循环解决该题,这个是很容易想到的。我们直接看代码吧。
```java
class Solution {
public int subarraySum(int[] nums, int k) {
int len = nums.length;
int sum = 0;
int count = 0;
for (int i = 0; i < len; ++i) {
for (int j = i; j < len; ++j) {
sum += nums[j];
if (sum == k) {
count++;
}
}
sum = 0;
}
return count;
}
}
```
下面我们我们使用前缀和的方法来解决这个题目,那么我们先来了解一下前缀和是什么东西。其实这个思想我们很早就接触过了。见下图
![](https://cdn.jsdelivr.net/gh/tan45du/github.io.phonto2@master/myphoto/微信截图_20210113193831.4wk2b9zc8vm0.png)
我们通过上图发现,我们的 presum 数组中保存的是 nums 元素的和presum[1] = presum[0] + nums[0];
presum [2] = presum[1] + nums[1],presum[3] = presum[2] + nums[2] ... 所以我们通过前缀和数组可以轻松得到每个区间的和,
例如我们需要获取 nums[2] 到 nums[4] 这个区间的和,我们则完全根据 presum 数组得到,是不是有点和我们之前说的字符串匹配算法中 BM,KMP 中的 next 数组和 suffix 数组作用类似。
那么我们怎么根据presum 数组获取 nums[2] 到 nums[4] 区间的和呢?见下图
![前缀和](https://cdn.jsdelivr.net/gh/tan45du/github.io.phonto2@master/myphoto/前缀和.77twdj3gpkg0.png)
所以我们 nums[2] 到 nums[4] 区间的和则可以由 presum[5] - presum[2] 得到。
也就是前 5 项的和减去前 2 项的和,得到第 3 项到第 5 项的和。那么我们可以遍历 presum 就能得到和为 K 的子数组的个数啦。
直接上代码。
```java
class Solution {
public int subarraySum(int[] nums, int k) {
//前缀和数组
int[] presum = new int[nums.length+1];
for (int i = 0; i < nums.length; i++) {
//这里需要注意我们的前缀和是presum[1]开始填充的
presum[i+1] = nums[i] + presum[i];
}
//统计个数
int count = 0;
for (int i = 0; i < nums.length; ++i) {
for (int j = i; j < nums.length; ++j) {
//注意偏移因为我们的nums[2]到nums[4]等于presum[5]-presum[2]
//所以这样就可以得到nums[i,j]区间内的和
if (presum[j+1] - presum[i] == k) {
count++;
}
}
}
return count;
}
}
```
我们通过上面的例子我们简单了解了前缀和思想,那么我们如果继续将其优化呢?
**前缀和 + HashMap**
**解析**
其实我们在之前的两数之和中已经用到了这个方法,我们一起来回顾两数之和 HashMap 的代码.
```java
class Solution {
public int[] twoSum(int[] nums, int target) {
HashMap<Integer,Integer> map = new HashMap<>();
//一次遍历
for (int i = 0; i < nums.length; ++i) {
//存在时,我们用数组得值为 key索引为 value
if (map.containsKey(target - nums[i])){
return new int[]{i,map.get(target-nums[i])};
}
//存入值
map.put(nums[i],i);
}
//返回
return new int[]{};
}
}
```
上面代码中,我们将数组的值和索引存入 map 中,当我们遍历到某一值 x 时,判断 map 中是否含有 target - x即可。其实我们现在这个题目和两数之和原理是一致的只不过我们是将**所有的前缀和**该**前缀和出现的次数**存到了 map 里。下面我们来看一下代码的执行过程。
**动图解析**
![](https://img-blog.csdnimg.cn/2021031809231883.gif#pic_center)
**题目代码**
```java
class Solution {
public int subarraySum(int[] nums, int k) {
if (nums.length == 0) {
return 0;
}
HashMap<Integer,Integer> map = new HashMap<>();
//细节,这里需要预存前缀和为 0 的情况,会漏掉前几位就满足的情况
//例如输入[1,1,0]k = 2 如果没有这行代码则会返回0,漏掉了1+1=2和1+1+0=2的情况
//输入:[3,1,1,0] k = 2时则不会漏掉
//因为presum[3] - presum[0]表示前面 3 位的和所以需要map.put(0,1),垫下底
map.put(0, 1);
int count = 0;
int presum = 0;
for (int x : nums) {
presum += x;
//当前前缀和已知,判断是否含有 presum - k的前缀和那么我们就知道某一区间的和为 k 了。
if (map.containsKey(presum - k)) {
count += map.get(presum - k);//获取presum-k前缀和出现次数
}
//更新
map.put(presum,map.getOrDefault(presum,0) + 1);
}
return count;
}
}
```