mirror of
https://github.com/chefyuan/algorithm-base.git
synced 2024-12-25 11:58:53 +00:00
erfen
This commit is contained in:
parent
d12ea08fd3
commit
c154e483df
1
gif-algorithm/二分查找及其变种
Submodule
1
gif-algorithm/二分查找及其变种
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit 8ebe8b2c2c30767c1999ef4f513a3e0adf8b294d
|
81
gif-algorithm/数组篇/leetcode54螺旋矩阵.md
Normal file
81
gif-algorithm/数组篇/leetcode54螺旋矩阵.md
Normal file
@ -0,0 +1,81 @@
|
||||
### leetcode 54 螺旋矩阵
|
||||
|
||||
题目描述
|
||||
|
||||
*给定一个包含 m* x n个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素。
|
||||
|
||||
|
||||
|
||||
示例一
|
||||
|
||||
> 输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
|
||||
> 输出:[1,2,3,6,9,8,7,4,5]
|
||||
|
||||
示例二
|
||||
|
||||
> 输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
|
||||
> 输出:[1,2,3,4,8,12,11,10,9,5,6,7]
|
||||
|
||||
|
||||
|
||||
这个题目很细非常细,思路很容易想到,但是要是完全实现也不是特别容易,我们一起分析下这个题目,我们可以这样理解,我们像剥洋葱似的一步步的剥掉外皮,直到遍历结束,见下图。
|
||||
|
||||
|
||||
|
||||
*![螺旋矩阵](https://pic.leetcode-cn.com/1615813563-uUiWlF-file_1615813563382)*
|
||||
|
||||
|
||||
|
||||
题目很容易理解,但是要想完全执行出来,也是不容易的,因为这里面的细节太多了,我们需要认真仔细的考虑边界。
|
||||
|
||||
|
||||
|
||||
我们也要考虑重复遍历的情况即什么时候跳出循环。刚才我们通过箭头知道了我们元素的遍历顺序,这个题目也就完成了一大半了,下面我们来讨论一下什么时候跳出循环,见下图。
|
||||
|
||||
|
||||
|
||||
注:这里需要注意的是,框框代表的是每个边界。
|
||||
|
||||
![](https://img-blog.csdnimg.cn/20210318095839543.gif)
|
||||
|
||||
题目代码:
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
public List<Integer> spiralOrder(int[][] matrix) {
|
||||
|
||||
List<Integer> arr = new ArrayList<>();
|
||||
int left = 0, right = matrix[0].length-1;
|
||||
int top = 0, down = matrix.length-1;
|
||||
|
||||
while (true) {
|
||||
for (int i = left; i <= right; ++i) {
|
||||
arr.add(matrix[top][i]);
|
||||
}
|
||||
top++;
|
||||
if (top > down) break;
|
||||
for (int i = top; i <= down; ++i) {
|
||||
arr.add(matrix[i][right]);
|
||||
}
|
||||
right--;
|
||||
if (left > right) break;
|
||||
for (int i = right; i >= left; --i) {
|
||||
arr.add(matrix[down][i]);
|
||||
}
|
||||
down--;
|
||||
if (top > down) break;
|
||||
for (int i = down; i >= top; --i) {
|
||||
arr.add(matrix[i][left]);
|
||||
}
|
||||
left++;
|
||||
if (left > right) break;
|
||||
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
143
gif-algorithm/数组篇/leetcode59螺旋矩阵2.md
Normal file
143
gif-algorithm/数组篇/leetcode59螺旋矩阵2.md
Normal file
@ -0,0 +1,143 @@
|
||||
|
||||
|
||||
### leetcode 59 螺旋矩阵 2
|
||||
|
||||
给你一个正整数 `n` ,生成一个包含 `1` 到 `n2` 所有元素,且元素按顺时针顺序螺旋排列的 `n x n` 正方形矩阵 `matrix` 。
|
||||
|
||||
**示例 1:**
|
||||
|
||||
> 输入:n = 3
|
||||
> 输出:[[1,2,3],[8,9,4],[7,6,5]]
|
||||
|
||||
**示例 2:**
|
||||
|
||||
> 输入:n = 1
|
||||
> 输出:[[1]]
|
||||
|
||||
其实我们只要做过了螺旋矩阵 第一题,这个题目我们完全可以一下搞定,几乎没有进行更改,我们先来看下 **leetcode 54** 题的解析。
|
||||
|
||||
|
||||
|
||||
### leetcode 54 螺旋矩阵
|
||||
|
||||
题目描述
|
||||
|
||||
*给定一个包含 m* x n个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素。
|
||||
|
||||
|
||||
|
||||
示例一
|
||||
|
||||
> 输入:matrix = [[1,2,3],[4,5,6],[7,8,9]]
|
||||
> 输出:[1,2,3,6,9,8,7,4,5]
|
||||
|
||||
示例二
|
||||
|
||||
> 输入:matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12]]
|
||||
> 输出:[1,2,3,4,8,12,11,10,9,5,6,7]
|
||||
|
||||
|
||||
|
||||
这个题目很细非常细,思路很容易想到,但是要是完全实现也不是特别容易,我们一起分析下这个题目,我们可以这样理解,我们像剥洋葱似的一步步的剥掉外皮,直到遍历结束,见下图。
|
||||
|
||||
|
||||
|
||||
*![螺旋矩阵](https://pic.leetcode-cn.com/1615813563-uUiWlF-file_1615813563382)*
|
||||
|
||||
|
||||
|
||||
题目很容易理解,但是要想完全执行出来,也是不容易的,因为这里面的细节太多了,我们需要认真仔细的考虑边界。
|
||||
|
||||
|
||||
|
||||
我们也要考虑重复遍历的情况即什么时候跳出循环。刚才我们通过箭头知道了我们元素的遍历顺序,这个题目也就完成了一大半了,下面我们来讨论一下什么时候跳出循环,见下图。
|
||||
|
||||
|
||||
|
||||
注:这里需要注意的是,框框代表的是每个边界。
|
||||
|
||||
![](https://img-blog.csdnimg.cn/20210318095839543.gif)
|
||||
|
||||
题目代码:
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
public List<Integer> spiralOrder(int[][] matrix) {
|
||||
|
||||
List<Integer> arr = new ArrayList<>();
|
||||
int left = 0, right = matrix[0].length-1;
|
||||
int top = 0, down = matrix.length-1;
|
||||
|
||||
while (true) {
|
||||
for (int i = left; i <= right; ++i) {
|
||||
arr.add(matrix[top][i]);
|
||||
}
|
||||
top++;
|
||||
if (top > down) break;
|
||||
for (int i = top; i <= down; ++i) {
|
||||
arr.add(matrix[i][right]);
|
||||
}
|
||||
right--;
|
||||
if (left > right) break;
|
||||
for (int i = right; i >= left; --i) {
|
||||
arr.add(matrix[down][i]);
|
||||
}
|
||||
down--;
|
||||
if (top > down) break;
|
||||
for (int i = down; i >= top; --i) {
|
||||
arr.add(matrix[i][left]);
|
||||
}
|
||||
left++;
|
||||
if (left > right) break;
|
||||
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
|
||||
|
||||
我们仅仅是将 54 反过来了,往螺旋矩阵里面插值,下面我们直接看代码吧,大家可以也可以对其改进,大家可以思考一下,如果修改能够让代码更简洁!
|
||||
|
||||
```java
|
||||
class Solution {
|
||||
public int[][] generateMatrix(int n) {
|
||||
|
||||
int[][] arr = new int[n][n];
|
||||
int left = 0;
|
||||
int right = n-1;
|
||||
int top = 0;
|
||||
int buttom = n-1;
|
||||
int num = 1;
|
||||
int numsize = n*n;
|
||||
while (true) {
|
||||
for (int i = left; i <= right; ++i) {
|
||||
arr[top][i] = num++;
|
||||
}
|
||||
top++;
|
||||
if (num > numsize) break;
|
||||
for (int i = top; i <= buttom; ++i) {
|
||||
arr[i][right] = num++;
|
||||
|
||||
}
|
||||
right--;
|
||||
if (num > numsize) break;
|
||||
for (int i = right; i >= left; --i) {
|
||||
arr[buttom][i] = num++;
|
||||
}
|
||||
buttom--;
|
||||
if (num > numsize) break;
|
||||
for (int i = buttom; i >= top; --i) {
|
||||
arr[i][left] = num++;
|
||||
}
|
||||
left++;
|
||||
if (num > numsize) break;
|
||||
|
||||
}
|
||||
return arr;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
Loading…
Reference in New Issue
Block a user