> 如果阅读时,发现错误,或者动画不可以显示的问题可以添加我微信好友 **[tan45du_one](https://raw.githubusercontent.com/tan45du/tan45du.github.io/master/个人微信.15egrcgqd94w.jpg)** ,备注 github + 题目 + 问题 向我反馈 > > 感谢支持,该仓库会一直维护,希望对各位有一丢丢帮助。 > > 另外希望手机阅读的同学可以来我的 [**公众号:程序厨**](https://raw.githubusercontent.com/tan45du/test/master/微信图片_20210320152235.2pthdebvh1c0.png) 两个平台同步,想要和题友一起刷题,互相监督的同学,可以在我的小屋点击[**刷题小队**](https://raw.githubusercontent.com/tan45du/test/master/微信图片_20210320152235.2pthdebvh1c0.png)进入。 #### [560. 和为 K 的子数组](https://leetcode-cn.com/problems/subarray-sum-equals-k/) **题目描述** > 给定一个整数数组和一个整数 k,你需要找到该数组中和为 k 的连续的子数组的个数。 **示例 1 :** > 输入:nums = [1,1,1], k = 2 > 输出: 2 , [1,1] 与 [1,1] 为两种不同的情况。 **暴力法** **解析** 这个题目的题意很容易理解,就是让我们返回和为 k 的子数组的个数,所以我们直接利用双重循环解决该题,这个是很容易想到的。我们直接看代码吧。 ```java class Solution { public int subarraySum(int[] nums, int k) { int len = nums.length; int sum = 0; int count = 0; for (int i = 0; i < len; ++i) { for (int j = i; j < len; ++j) { sum += nums[j]; if (sum == k) { count++; } } sum = 0; } return count; } } ``` 下面我们我们使用前缀和的方法来解决这个题目,那么我们先来了解一下前缀和是什么东西。其实这个思想我们很早就接触过了。见下图 ![](https://cdn.jsdelivr.net/gh/tan45du/github.io.phonto2@master/myphoto/微信截图_20210113193831.4wk2b9zc8vm0.png) 我们通过上图发现,我们的 presum 数组中保存的是 nums 元素的和,presum[1] = presum[0] + nums[0]; presum [2] = presum[1] + nums[1],presum[3] = presum[2] + nums[2] ... 所以我们通过前缀和数组可以轻松得到每个区间的和, 例如我们需要获取 nums[2] 到 nums[4] 这个区间的和,我们则完全根据 presum 数组得到,是不是有点和我们之前说的字符串匹配算法中 BM,KMP 中的 next 数组和 suffix 数组作用类似。 那么我们怎么根据 presum 数组获取 nums[2] 到 nums[4] 区间的和呢?见下图 ![前缀和](https://cdn.jsdelivr.net/gh/tan45du/github.io.phonto2@master/myphoto/前缀和.77twdj3gpkg0.png) 所以我们 nums[2] 到 nums[4] 区间的和则可以由 presum[5] - presum[2] 得到。 也就是前 5 项的和减去前 2 项的和,得到第 3 项到第 5 项的和。那么我们可以遍历 presum 就能得到和为 K 的子数组的个数啦。 直接上代码。 ```java class Solution { public int subarraySum(int[] nums, int k) { //前缀和数组 int[] presum = new int[nums.length+1]; for (int i = 0; i < nums.length; i++) { //这里需要注意,我们的前缀和是presum[1]开始填充的 presum[i+1] = nums[i] + presum[i]; } //统计个数 int count = 0; for (int i = 0; i < nums.length; ++i) { for (int j = i; j < nums.length; ++j) { //注意偏移,因为我们的nums[2]到nums[4]等于presum[5]-presum[2] //所以这样就可以得到nums[i,j]区间内的和 if (presum[j+1] - presum[i] == k) { count++; } } } return count; } } ``` 我们通过上面的例子我们简单了解了前缀和思想,那么我们如果继续将其优化呢? **前缀和 + HashMap** **解析** 其实我们在之前的两数之和中已经用到了这个方法,我们一起来回顾两数之和 HashMap 的代码. ```java class Solution { public int[] twoSum(int[] nums, int target) { HashMap map = new HashMap<>(); //一次遍历 for (int i = 0; i < nums.length; ++i) { //存在时,我们用数组得值为 key,索引为 value if (map.containsKey(target - nums[i])){ return new int[]{i,map.get(target-nums[i])}; } //存入值 map.put(nums[i],i); } //返回 return new int[]{}; } } ``` 上面代码中,我们将数组的值和索引存入 map 中,当我们遍历到某一值 x 时,判断 map 中是否含有 target - x,即可。其实我们现在这个题目和两数之和原理是一致的,只不过我们是将**所有的前缀和**该**前缀和出现的次数**存到了 map 里。下面我们来看一下代码的执行过程。 **动图解析** ![](https://img-blog.csdnimg.cn/2021031809231883.gif#pic_center) **题目代码** Java Code: ```java class Solution { public int subarraySum(int[] nums, int k) { if (nums.length == 0) { return 0; } HashMap map = new HashMap<>(); //细节,这里需要预存前缀和为 0 的情况,会漏掉前几位就满足的情况 //例如输入[1,1,0],k = 2 如果没有这行代码,则会返回0,漏掉了1+1=2,和1+1+0=2的情况 //输入:[3,1,1,0] k = 2时则不会漏掉 //因为presum[3] - presum[0]表示前面 3 位的和,所以需要map.put(0,1),垫下底 map.put(0, 1); int count = 0; int presum = 0; for (int x : nums) { presum += x; //当前前缀和已知,判断是否含有 presum - k的前缀和,那么我们就知道某一区间的和为 k 了。 if (map.containsKey(presum - k)) { count += map.get(presum - k);//获取presum-k前缀和出现次数 } //更新 map.put(presum,map.getOrDefault(presum,0) + 1); } return count; } } ``` C++ Code: ```cpp public: int subarraySum(vector& nums, int k) { if (nums.size() == 0) { return 0; } map m; //细节,这里需要预存前缀和为 0 的情况,会漏掉前几位就满足的情况 //例如输入[1,1,0],k = 2 如果没有这行代码,则会返回0,漏掉了1+1=2,和1+1+0=2的情况 //输入:[3,1,1,0] k = 2时则不会漏掉 //因为presum[3] - presum[0]表示前面 3 位的和,所以需要m.insert({0,1}),垫下底 m.insert({0, 1}); int count = 0; int presum = 0; for (int x : nums) { presum += x; //当前前缀和已知,判断是否含有 presum - k的前缀和,那么我们就知道某一区间的和为 k 了。 if (m.find(presum - k) != m.end()) { count += m[presum - k];//获取presum-k前缀和出现次数 } //更新 if(m.find(presum) != m.end()) m[presum]++; else m[presum] = 1; } return count; } }; ``` Go Code: ```GO func subarraySum(nums []int, k int) int { m := map[int]int{} // m存的是前缀和,没有元素的时候,和为0,且有1个子数组(空数组)满足条件,即m[0] = 1 m[0] = 1 sum := 0 cnt := 0 for _, num := range nums { sum += num if v, ok := m[sum - k]; ok { cnt += v } // 更新满足前缀和的子数组数量 m[sum]++ } return cnt } ```