algorithm-base/animation-simulation/数组篇/长度最小的子数组.md
2023-05-07 11:18:42 +08:00

152 lines
4.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

> 如果阅读时,发现错误,或者动画不可以显示的问题可以添加我微信好友 **[tan45du_one](https://raw.githubusercontent.com/tan45du/tan45du.github.io/master/个人微信.15egrcgqd94w.jpg)** ,备注 github + 题目 + 问题 向我反馈
>
> 感谢支持,该仓库会一直维护,希望对各位有一丢丢帮助。
>
> 另外希望手机阅读的同学可以来我的 <u>[**公众号:程序厨**](https://raw.githubusercontent.com/tan45du/test/master/微信图片_20210320152235.2pthdebvh1c0.png)</u> 两个平台同步,想要和题友一起刷题,互相监督的同学,可以在我的小屋点击<u>[**刷题小队**](https://raw.githubusercontent.com/tan45du/test/master/微信图片_20210320152235.2pthdebvh1c0.png)</u>进入。
#### [209. 长度最小的子数组](https://leetcode-cn.com/problems/minimum-size-subarray-sum/)
我们下面再看一种新类型的双指针,也就是我们大家熟知的滑动窗口。这也是我们做题时经常用到的,下面我们来看一下题目吧!
#### 题目描述
> 给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
> 输入s = 7, nums = [2,3,1,2,4,3]
> 输出2
> 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
#### 题目解析
滑动窗口:**就是通过不断调节子数组的起始位置和终止位置,进而得到我们想要的结果**,滑动窗口也是双指针的一种。
下面我们来看一下这道题目的做题思路,其实原理也很简单,我们创建两个指针,一个指针负责在前面探路,并不断累加遍历过的元素的值,当和大于等于我们的目标值时,后指针开始进行移动,判断去除当前值时,是否仍能满足我们的要求,直到不满足时后指针 停止,前面指针继续移动,直到遍历结束。是不是很简单呀。前指针和后指针之间的元素个数就是我们的滑动窗口的窗口大小。见下图
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210321131617533.png)
好啦,该题的解题思路我们已经了解啦,下面我们看一下,代码的运行过程吧。
![](https://img-blog.csdnimg.cn/2021032111513777.gif)
#### 题目代码
Java Code:
```java
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int len = nums.length;
int windowlen = Integer.MAX_VALUE;
int i = 0;
int sum = 0;
for (int j = 0; j < len; ++j) {
sum += nums[j];
while (sum >= s) {
windowlen = Math.min (windowlen, j - i + 1);
sum -= nums[i];
i++;
}
}
return windowlen == Integer.MAX_VALUE ? 0 : windowlen;
}
}
```
C++ Code:
```cpp
class Solution {
public:
int minSubArrayLen(int t, vector<int>& nums) {
int n = nums.size();
int i = 0, sum = 0, winlen = INT_MAX;
for(int j = 0; j < n; ++j){
sum += nums[j];
while(sum >= t){
winlen = min(winlen, j - i + 1);
sum -= nums[i++];
}
}
return winlen == INT_MAX? 0: winlen;
}
};
```
Python3 Code:
```python
from typing import List
import sys
class Solution:
def minSubArrayLen(self, s: int, nums: List[int])->int:
leng = len(nums)
windowlen = sys.maxsize
i = 0
sum = 0
for j in range(0, leng):
sum += nums[j]
while sum >= s:
windowlen = min(windowlen, j - i + 1)
sum -= nums[i]
i += 1
if windowlen == sys.maxsize:
return 0
else:
return windowlen
```
Swift Code
```swift
class Solution {
func minSubArrayLen(_ target: Int, _ nums: [Int]) -> Int {
var sum = 0, windowlen = Int.max, i = 0
for j in 0..<nums.count {
sum += nums[j]
while sum >= target {
windowlen = min(windowlen, j - i + 1)
sum -= nums[i]
i += 1
}
}
return windowlen == Int.max ? 0 : windowlen
}
}
```
Go Code:
```go
func minSubArrayLen(target int, nums []int) int {
length := len(nums)
winLen := length + 1
i := 0
sum := 0
for j := 0; j < length; j++ {
sum += nums[j]
for sum >= target {
winLen = min(winLen, j - i + 1)
sum -= nums[i]
i++
}
}
if winLen == length + 1 {
return 0
}
return winLen
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
```