update at 2022-03-05 17:05:21 by ehlxr

This commit is contained in:
ehlxr 2022-03-05 17:05:21 +08:00
parent 226c572e59
commit 3c8752be70
2 changed files with 215 additions and 0 deletions

View File

@ -0,0 +1,108 @@
/*
* The MIT License (MIT)
*
* Copyright © 2022 xrv <xrg@live.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package io.github.ehlxr.algorithm.dp;
/**
* 对于一组不同重量不同价值不可分割的物品我们选择将某些物品装入背包在满足背包最大重量限制的前提下背包中可装入物品的总价值最大是多少呢
*
* @author ehlxr
* @since 2022-03-05 14:31.
*/
public class KnapSack3 {
private final int[] weight = {2, 2, 4, 6, 3}; // 物品的重量
private final int[] value = {3, 4, 8, 9, 6}; // 物品的价值
private final int n = 5; // 物品个数
private final int w = 9; // 背包承受的最大重量
private int maxV = Integer.MIN_VALUE; // 结果放到 maxV
/**
* 动态规划方式
*
* @param weight 物品重量
* @param value 物品的价值
* @param n: 物品个数
* @param w: 背包可承载重量
* @return 最大价值
*/
public static int knapsack3(int[] weight, int[] value, int n, int w) {
int[][] states = new int[n][w + 1];
for (int i = 0; i < n; ++i) { // 初始化 states,默认 -1
for (int j = 0; j < w + 1; ++j) {
states[i][j] = -1;
}
}
states[0][0] = 0;
if (weight[0] <= w) {
states[0][weight[0]] = value[0];
}
for (int i = 1; i < n; ++i) { // 动态规划,状态转移
for (int j = 0; j <= w; ++j) { // 不选择第 i 个物品
if (states[i - 1][j] >= 0) {
// 复制上一层状态
states[i][j] = states[i - 1][j];
}
}
// 下面的 j 表示重量
for (int j = 0; j <= w - weight[i]; ++j) { // 选择第 i 个物品
if (states[i - 1][j] >= 0) { // 表示上一层存在重量为 j 的状态
int v = states[i - 1][j] + value[i]; // 上一层重量为 j 的价值 + i 物品的价值
if (v > states[i][j + weight[i]]) { // states[i][j + weight[i]]存储当前重量 j + 物品 i 的重量所在位置的价值
states[i][j + weight[i]] = v;
}
}
}
}
// 找出最大值
int maxvalue = -1;
for (int j = 0; j <= w; ++j) {
if (states[n - 1][j] > maxvalue) {
maxvalue = states[n - 1][j];
}
}
return maxvalue;
}
/**
* 回溯方式
*
* @param i 第几个物品
* @param cw 物品的重量
* @param cv 物品的价值
*/
public void f(int i, int cw, int cv) { // 调用 f (0, 0, 0)
if (cw == w || i == n) { //cw==w 表示装满了,i==n 表示物品都考察完了
if (cv > maxV) {
maxV = cv;
}
return;
}
f(i + 1, cw, cv); // 选择不装第 i 个物品
if (cw + weight[i] <= w) {
f(i + 1, cw + weight[i], cv + value[i]); // 选择装第 i 个物品
}
}
}

View File

@ -0,0 +1,107 @@
/*
* The MIT License (MIT)
*
* Copyright © 2022 xrv <xrg@live.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
package io.github.ehlxr.algorithm.dp;
/**
* 假设我们有一个 n 乘以 n 的矩阵 w [n][n]矩阵存储的都是正整数棋子起始位置在左上角终止位置在右下角
* 我们将棋子从左上角移动到右下角每次只能向右或者向下移动一位从左上角到右下角会有很多不同的路径可以走
* 我们把每条路径经过的数字加起来看作路径的长度那从左上角移动到右下角的最短路径长度是多少呢
*
* @author ehlxr
* @since 2022-03-05 16:46.
*/
public class MinDist {
private final int[][] matrix = {{1, 3, 5, 9}, {2, 1, 3, 4}, {5, 2, 6, 7}, {6, 8, 4, 3}};
private final int[][] mem = new int[4][4];
private int minDist = Integer.MAX_VALUE; // 全局变量或者成员变量
/**
* 状态转移表法
*/
public int minDistDP(int[][] matrix, int n) {
int[][] states = new int[n][n];
int sum = 0;
for (int j = 0; j < n; ++j) { // 初始化states的第一行数据
sum += matrix[0][j];
states[0][j] = sum;
}
sum = 0;
for (int i = 0; i < n; ++i) { // 初始化states的第一列数据
sum += matrix[i][0];
states[i][0] = sum;
}
for (int i = 1; i < n; ++i) {
for (int j = 1; j < n; ++j) {
states[i][j] = matrix[i][j] + Math.min(states[i][j - 1], states[i - 1][j]);
}
}
return states[n - 1][n - 1];
}
/**
* 状态转移方程法
*/
public int minDist(int i, int j) { // 调用minDist(n-1, n-1);
if (i == 0 && j == 0) {
return matrix[0][0];
}
// 备忘录如果计算过即有数字存在则直接返回
if (mem[i][j] > 0) {
return mem[i][j];
}
int minLeft = Integer.MAX_VALUE;
if (j - 1 >= 0) {
minLeft = minDist(i, j - 1);
}
int minUp = Integer.MAX_VALUE;
if (i - 1 >= 0) {
minUp = minDist(i - 1, j);
}
int currMinDist = matrix[i][j] + Math.min(minLeft, minUp);
mem[i][j] = currMinDist;
return currMinDist;
}
/**
* 回溯方式
*/
public void minDistBacktracing(int i, int j, int dist, int[][] w, int n) {
// 到达了n-1, n-1这个位置了这里看着有点奇怪哈你自己举个例子看下
if (i == n && j == n) {
if (dist < minDist) {
minDist = dist;
}
return;
}
if (i < n) { // 往下走更新i=i+1, j=j
minDistBacktracing(i + 1, j, dist + w[i][j], w, n);
}
if (j < n) { // 往右走更新i=i, j=j+1
minDistBacktracing(i, j + 1, dist + w[i][j], w, n);
}
}
}