mirror of
https://github.com/gopl-zh/gopl-zh.github.com.git
synced 2025-08-05 23:21:51 +00:00
回到简体
This commit is contained in:
@@ -1,10 +1,10 @@
|
||||
## 12.5. 通過reflect.Value脩改值
|
||||
## 12.5. 通过reflect.Value修改值
|
||||
|
||||
到目前爲止,反射還隻是程序中變量的另一種訪問方式。然而,在本節中我們將重點討論如果通過反射機製來脩改變量。
|
||||
到目前为止,反射还只是程序中变量的另一种访问方式。然而,在本节中我们将重点讨论如果通过反射机制来修改变量。
|
||||
|
||||
迴想一下,Go語言中類似x、x.f[1]和*p形式的表達式都可以表示變量,但是其它如x + 1和f(2)則不是變量。一個變量就是一個可尋址的內存空間,里面存儲了一個值,併且存儲的值可以通過內存地址來更新。
|
||||
回想一下,Go语言中类似x、x.f[1]和*p形式的表达式都可以表示变量,但是其它如x + 1和f(2)则不是变量。一个变量就是一个可寻址的内存空间,里面存储了一个值,并且存储的值可以通过内存地址来更新。
|
||||
|
||||
對於reflect.Values也有類似的區别。有一些reflect.Values是可取地址的;其它一些則不可以。考慮以下的聲明語句:
|
||||
对于reflect.Values也有类似的区别。有一些reflect.Values是可取地址的;其它一些则不可以。考虑以下的声明语句:
|
||||
|
||||
```Go
|
||||
x := 2 // value type variable?
|
||||
@@ -14,9 +14,9 @@ c := reflect.ValueOf(&x) // &x *int no
|
||||
d := c.Elem() // 2 int yes (x)
|
||||
```
|
||||
|
||||
其中a對應的變量則不可取地址。因爲a中的值僅僅是整數2的拷貝副本。b中的值也同樣不可取地址。c中的值還是不可取地址,它隻是一個指針`&x`的拷貝。實際上,所有通過reflect.ValueOf(x)返迴的reflect.Value都是不可取地址的。但是對於d,它是c的解引用方式生成的,指向另一個變量,因此是可取地址的。我們可以通過調用reflect.ValueOf(&x).Elem(),來獲取任意變量x對應的可取地址的Value。
|
||||
其中a对应的变量则不可取地址。因为a中的值仅仅是整数2的拷贝副本。b中的值也同样不可取地址。c中的值还是不可取地址,它只是一个指针`&x`的拷贝。实际上,所有通过reflect.ValueOf(x)返回的reflect.Value都是不可取地址的。但是对于d,它是c的解引用方式生成的,指向另一个变量,因此是可取地址的。我们可以通过调用reflect.ValueOf(&x).Elem(),来获取任意变量x对应的可取地址的Value。
|
||||
|
||||
我們可以通過調用reflect.Value的CanAddr方法來判斷其是否可以被取地址:
|
||||
我们可以通过调用reflect.Value的CanAddr方法来判断其是否可以被取地址:
|
||||
|
||||
```Go
|
||||
fmt.Println(a.CanAddr()) // "false"
|
||||
@@ -25,9 +25,9 @@ fmt.Println(c.CanAddr()) // "false"
|
||||
fmt.Println(d.CanAddr()) // "true"
|
||||
```
|
||||
|
||||
每當我們通過指針間接地獲取的reflect.Value都是可取地址的,卽使開始的是一個不可取地址的Value。在反射機製中,所有關於是否支持取地址的規則都是類似的。例如,slice的索引表達式e[i]將隱式地包含一個指針,它就是可取地址的,卽使開始的e表達式不支持也沒有關繫。以此類推,reflect.ValueOf(e).Index(i)對於的值也是可取地址的,卽使原始的reflect.ValueOf(e)不支持也沒有關繫。
|
||||
每当我们通过指针间接地获取的reflect.Value都是可取地址的,即使开始的是一个不可取地址的Value。在反射机制中,所有关于是否支持取地址的规则都是类似的。例如,slice的索引表达式e[i]将隐式地包含一个指针,它就是可取地址的,即使开始的e表达式不支持也没有关系。以此类推,reflect.ValueOf(e).Index(i)对于的值也是可取地址的,即使原始的reflect.ValueOf(e)不支持也没有关系。
|
||||
|
||||
要從變量對應的可取地址的reflect.Value來訪問變量需要三個步驟。第一步是調用Addr()方法,它返迴一個Value,里面保存了指向變量的指針。然後是在Value上調用Interface()方法,也就是返迴一個interface{},里面通用包含指向變量的指針。最後,如果我們知道變量的類型,我們可以使用類型的斷言機製將得到的interface{}類型的接口強製環爲普通的類型指針。這樣我們就可以通過這個普通指針來更新變量了:
|
||||
要从变量对应的可取地址的reflect.Value来访问变量需要三个步骤。第一步是调用Addr()方法,它返回一个Value,里面保存了指向变量的指针。然后是在Value上调用Interface()方法,也就是返回一个interface{},里面通用包含指向变量的指针。最后,如果我们知道变量的类型,我们可以使用类型的断言机制将得到的interface{}类型的接口强制环为普通的类型指针。这样我们就可以通过这个普通指针来更新变量了:
|
||||
|
||||
```Go
|
||||
x := 2
|
||||
@@ -37,20 +37,20 @@ px := d.Addr().Interface().(*int) // px := &x
|
||||
fmt.Println(x) // "3"
|
||||
```
|
||||
|
||||
或者,不使用指針,而是通過調用可取地址的reflect.Value的reflect.Value.Set方法來更新對於的值:
|
||||
或者,不使用指针,而是通过调用可取地址的reflect.Value的reflect.Value.Set方法来更新对于的值:
|
||||
|
||||
```Go
|
||||
d.Set(reflect.ValueOf(4))
|
||||
fmt.Println(x) // "4"
|
||||
```
|
||||
|
||||
Set方法將在運行時執行和編譯時類似的可賦值性約束的檢査。以上代碼,變量和值都是int類型,但是如果變量是int64類型,那麽程序將拋出一個panic異常,所以關鍵問題是要確保改類型的變量可以接受對應的值:
|
||||
Set方法将在运行时执行和编译时类似的可赋值性约束的检查。以上代码,变量和值都是int类型,但是如果变量是int64类型,那么程序将抛出一个panic异常,所以关键问题是要确保改类型的变量可以接受对应的值:
|
||||
|
||||
```Go
|
||||
d.Set(reflect.ValueOf(int64(5))) // panic: int64 is not assignable to int
|
||||
```
|
||||
|
||||
通用對一個不可取地址的reflect.Value調用Set方法也會導致panic異常:
|
||||
通用对一个不可取地址的reflect.Value调用Set方法也会导致panic异常:
|
||||
|
||||
```Go
|
||||
x := 2
|
||||
@@ -58,7 +58,7 @@ b := reflect.ValueOf(x)
|
||||
b.Set(reflect.ValueOf(3)) // panic: Set using unaddressable value
|
||||
```
|
||||
|
||||
這里有很多用於基本數據類型的Set方法:SetInt、SetUint、SetString和SetFloat等。
|
||||
这里有很多用于基本数据类型的Set方法:SetInt、SetUint、SetString和SetFloat等。
|
||||
|
||||
```Go
|
||||
d := reflect.ValueOf(&x).Elem()
|
||||
@@ -66,7 +66,7 @@ d.SetInt(3)
|
||||
fmt.Println(x) // "3"
|
||||
```
|
||||
|
||||
從某種程度上説,這些Set方法總是盡可能地完成任務。以SetInt爲例,隻要變量是某種類型的有符號整數就可以工作,卽使是一些命名的類型,隻要底層數據類型是有符號整數就可以,而且如果對於變量類型值太大的話會被自動截斷。但需要謹慎的是:對於一個引用interface{}類型的reflect.Value調用SetInt會導致panic異常,卽使那個interface{}變量對於整數類型也不行。
|
||||
从某种程度上说,这些Set方法总是尽可能地完成任务。以SetInt为例,只要变量是某种类型的有符号整数就可以工作,即使是一些命名的类型,只要底层数据类型是有符号整数就可以,而且如果对于变量类型值太大的话会被自动截断。但需要谨慎的是:对于一个引用interface{}类型的reflect.Value调用SetInt会导致panic异常,即使那个interface{}变量对于整数类型也不行。
|
||||
|
||||
```Go
|
||||
x := 1
|
||||
@@ -84,7 +84,7 @@ ry.SetString("hello") // panic: SetString called on interface Value
|
||||
ry.Set(reflect.ValueOf("hello")) // OK, y = "hello"
|
||||
```
|
||||
|
||||
當我們用Display顯示os.Stdout結構時,我們發現反射可以越過Go語言的導出規則的限製讀取結構體中未導出的成員,比如在類Unix繫統上os.File結構體中的fd int成員。然而,利用反射機製併不能脩改這些未導出的成員:
|
||||
当我们用Display显示os.Stdout结构时,我们发现反射可以越过Go语言的导出规则的限制读取结构体中未导出的成员,比如在类Unix系统上os.File结构体中的fd int成员。然而,利用反射机制并不能修改这些未导出的成员:
|
||||
|
||||
```Go
|
||||
stdout := reflect.ValueOf(os.Stdout).Elem() // *os.Stdout, an os.File var
|
||||
@@ -94,7 +94,7 @@ fmt.Println(fd.Int()) // "1"
|
||||
fd.SetInt(2) // panic: unexported field
|
||||
```
|
||||
|
||||
一個可取地址的reflect.Value會記録一個結構體成員是否是未導出成員,如果是的話則拒絶脩改操作。因此,CanAddr方法併不能正確反映一個變量是否是可以被脩改的。另一個相關的方法CanSet是用於檢査對應的reflect.Value是否是可取地址併可被脩改的:
|
||||
一个可取地址的reflect.Value会记录一个结构体成员是否是未导出成员,如果是的话则拒绝修改操作。因此,CanAddr方法并不能正确反映一个变量是否是可以被修改的。另一个相关的方法CanSet是用于检查对应的reflect.Value是否是可取地址并可被修改的:
|
||||
|
||||
```Go
|
||||
fmt.Println(fd.CanAddr(), fd.CanSet()) // "true false"
|
||||
|
Reference in New Issue
Block a user