This commit is contained in:
github-actions[bot]
2022-08-04 06:59:33 +00:00
commit ca571eb691
415 changed files with 125430 additions and 0 deletions

View File

@@ -0,0 +1,85 @@
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file contains a straightforward implementation of
// Reed-Solomon encoding, along with a benchmark.
// It goes with http://research.swtch.com/field.
//
// For an optimized implementation, see gf256.go.
package gf256
import (
"bytes"
"fmt"
"testing"
)
// BlogECC writes to check the error correcting code bytes
// for data using the given Reed-Solomon parameters.
func BlogECC(rs *RSEncoder, m []byte, check []byte) {
if len(check) < rs.c {
panic("gf256: invalid check byte length")
}
if rs.c == 0 {
return
}
// The check bytes are the remainder after dividing
// data padded with c zeros by the generator polynomial.
// p = data padded with c zeros.
var p []byte
n := len(m) + rs.c
if len(rs.p) >= n {
p = rs.p
} else {
p = make([]byte, n)
}
copy(p, m)
for i := len(m); i < len(p); i++ {
p[i] = 0
}
gen := rs.gen
// Divide p by gen, leaving the remainder in p[len(data):].
// p[0] is the most significant term in p, and
// gen[0] is the most significant term in the generator.
for i := 0; i < len(m); i++ {
k := f.Mul(p[i], f.Inv(gen[0])) // k = pi / g0
// p -= k·g
for j, g := range gen {
p[i+j] = f.Add(p[i+j], f.Mul(k, g))
}
}
copy(check, p[len(m):])
rs.p = p
}
func BenchmarkBlogECC(b *testing.B) {
data := []byte{0x10, 0x20, 0x0c, 0x56, 0x61, 0x80, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0x10, 0x20, 0x0c, 0x56, 0x61, 0x80, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11}
check := []byte{0x29, 0x41, 0xb3, 0x93, 0x8, 0xe8, 0xa3, 0xe7, 0x63, 0x8f}
out := make([]byte, len(check))
rs := NewRSEncoder(f, len(check))
for i := 0; i < b.N; i++ {
BlogECC(rs, data, out)
}
b.SetBytes(int64(len(data)))
if !bytes.Equal(out, check) {
fmt.Printf("have %#v want %#v\n", out, check)
}
}
func TestBlogECC(t *testing.T) {
data := []byte{0x10, 0x20, 0x0c, 0x56, 0x61, 0x80, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11}
check := []byte{0xa5, 0x24, 0xd4, 0xc1, 0xed, 0x36, 0xc7, 0x87, 0x2c, 0x55}
out := make([]byte, len(check))
rs := NewRSEncoder(f, len(check))
BlogECC(rs, data, out)
if !bytes.Equal(out, check) {
t.Errorf("have %x want %x", out, check)
}
}

View File

@@ -0,0 +1,241 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package gf256 implements arithmetic over the Galois Field GF(256).
package gf256
import "strconv"
// A Field represents an instance of GF(256) defined by a specific polynomial.
type Field struct {
log [256]byte // log[0] is unused
exp [510]byte
}
// NewField returns a new field corresponding to the polynomial poly
// and generator α. The Reed-Solomon encoding in QR codes uses
// polynomial 0x11d with generator 2.
//
// The choice of generator α only affects the Exp and Log operations.
func NewField(poly, α int) *Field {
if poly < 0x100 || poly >= 0x200 || reducible(poly) {
panic("gf256: invalid polynomial: " + strconv.Itoa(poly))
}
var f Field
x := 1
for i := 0; i < 255; i++ {
if x == 1 && i != 0 {
panic("gf256: invalid generator " + strconv.Itoa(α) +
" for polynomial " + strconv.Itoa(poly))
}
f.exp[i] = byte(x)
f.exp[i+255] = byte(x)
f.log[x] = byte(i)
x = mul(x, α, poly)
}
f.log[0] = 255
for i := 0; i < 255; i++ {
if f.log[f.exp[i]] != byte(i) {
panic("bad log")
}
if f.log[f.exp[i+255]] != byte(i) {
panic("bad log")
}
}
for i := 1; i < 256; i++ {
if f.exp[f.log[i]] != byte(i) {
panic("bad log")
}
}
return &f
}
// nbit returns the number of significant in p.
func nbit(p int) uint {
n := uint(0)
for ; p > 0; p >>= 1 {
n++
}
return n
}
// polyDiv divides the polynomial p by q and returns the remainder.
func polyDiv(p, q int) int {
np := nbit(p)
nq := nbit(q)
for ; np >= nq; np-- {
if p&(1<<(np-1)) != 0 {
p ^= q << (np - nq)
}
}
return p
}
// mul returns the product x*y mod poly, a GF(256) multiplication.
func mul(x, y, poly int) int {
z := 0
for x > 0 {
if x&1 != 0 {
z ^= y
}
x >>= 1
y <<= 1
if y&0x100 != 0 {
y ^= poly
}
}
return z
}
// reducible reports whether p is reducible.
func reducible(p int) bool {
// Multiplying n-bit * n-bit produces (2n-1)-bit,
// so if p is reducible, one of its factors must be
// of np/2+1 bits or fewer.
np := nbit(p)
for q := 2; q < 1<<(np/2+1); q++ {
if polyDiv(p, q) == 0 {
return true
}
}
return false
}
// Add returns the sum of x and y in the field.
func (f *Field) Add(x, y byte) byte {
return x ^ y
}
// Exp returns the base-α exponential of e in the field.
// If e < 0, Exp returns 0.
func (f *Field) Exp(e int) byte {
if e < 0 {
return 0
}
return f.exp[e%255]
}
// Log returns the base-α logarithm of x in the field.
// If x == 0, Log returns -1.
func (f *Field) Log(x byte) int {
if x == 0 {
return -1
}
return int(f.log[x])
}
// Inv returns the multiplicative inverse of x in the field.
// If x == 0, Inv returns 0.
func (f *Field) Inv(x byte) byte {
if x == 0 {
return 0
}
return f.exp[255-f.log[x]]
}
// Mul returns the product of x and y in the field.
func (f *Field) Mul(x, y byte) byte {
if x == 0 || y == 0 {
return 0
}
return f.exp[int(f.log[x])+int(f.log[y])]
}
// An RSEncoder implements Reed-Solomon encoding
// over a given field using a given number of error correction bytes.
type RSEncoder struct {
f *Field
c int
gen []byte
lgen []byte
p []byte
}
func (f *Field) gen(e int) (gen, lgen []byte) {
// p = 1
p := make([]byte, e+1)
p[e] = 1
for i := 0; i < e; i++ {
// p *= (x + Exp(i))
// p[j] = p[j]*Exp(i) + p[j+1].
c := f.Exp(i)
for j := 0; j < e; j++ {
p[j] = f.Mul(p[j], c) ^ p[j+1]
}
p[e] = f.Mul(p[e], c)
}
// lp = log p.
lp := make([]byte, e+1)
for i, c := range p {
if c == 0 {
lp[i] = 255
} else {
lp[i] = byte(f.Log(c))
}
}
return p, lp
}
// NewRSEncoder returns a new Reed-Solomon encoder
// over the given field and number of error correction bytes.
func NewRSEncoder(f *Field, c int) *RSEncoder {
gen, lgen := f.gen(c)
return &RSEncoder{f: f, c: c, gen: gen, lgen: lgen}
}
// ECC writes to check the error correcting code bytes
// for data using the given Reed-Solomon parameters.
func (rs *RSEncoder) ECC(data []byte, check []byte) {
if len(check) < rs.c {
panic("gf256: invalid check byte length")
}
if rs.c == 0 {
return
}
// The check bytes are the remainder after dividing
// data padded with c zeros by the generator polynomial.
// p = data padded with c zeros.
var p []byte
n := len(data) + rs.c
if len(rs.p) >= n {
p = rs.p
} else {
p = make([]byte, n)
}
copy(p, data)
for i := len(data); i < len(p); i++ {
p[i] = 0
}
// Divide p by gen, leaving the remainder in p[len(data):].
// p[0] is the most significant term in p, and
// gen[0] is the most significant term in the generator,
// which is always 1.
// To avoid repeated work, we store various values as
// lv, not v, where lv = log[v].
f := rs.f
lgen := rs.lgen[1:]
for i := 0; i < len(data); i++ {
c := p[i]
if c == 0 {
continue
}
q := p[i+1:]
exp := f.exp[f.log[c]:]
for j, lg := range lgen {
if lg != 255 { // lgen uses 255 for log 0
q[j] ^= exp[lg]
}
}
}
copy(check, p[len(data):])
rs.p = p
}

View File

@@ -0,0 +1,194 @@
// Copyright 2010 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gf256
import (
"bytes"
"fmt"
"testing"
)
var f = NewField(0x11d, 2) // x^8 + x^4 + x^3 + x^2 + 1
func TestBasic(t *testing.T) {
if f.Exp(0) != 1 || f.Exp(1) != 2 || f.Exp(255) != 1 {
panic("bad Exp")
}
}
func TestECC(t *testing.T) {
data := []byte{0x10, 0x20, 0x0c, 0x56, 0x61, 0x80, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11}
check := []byte{0xa5, 0x24, 0xd4, 0xc1, 0xed, 0x36, 0xc7, 0x87, 0x2c, 0x55}
out := make([]byte, len(check))
rs := NewRSEncoder(f, len(check))
rs.ECC(data, out)
if !bytes.Equal(out, check) {
t.Errorf("have %x want %x", out, check)
}
}
func TestLinear(t *testing.T) {
d1 := []byte{0x00, 0x00}
c1 := []byte{0x00, 0x00}
out := make([]byte, len(c1))
rs := NewRSEncoder(f, len(c1))
if rs.ECC(d1, out); !bytes.Equal(out, c1) {
t.Errorf("ECBytes(%x, %d) = %x, want 0", d1, len(c1), out)
}
d2 := []byte{0x00, 0x01}
c2 := make([]byte, 2)
rs.ECC(d2, c2)
d3 := []byte{0x00, 0x02}
c3 := make([]byte, 2)
rs.ECC(d3, c3)
cx := make([]byte, 2)
for i := range cx {
cx[i] = c2[i] ^ c3[i]
}
d4 := []byte{0x00, 0x03}
c4 := make([]byte, 2)
rs.ECC(d4, c4)
if !bytes.Equal(cx, c4) {
t.Errorf("ECBytes(%x, 2) = %x\nECBytes(%x, 2) = %x\nxor = %x\nECBytes(%x, 2) = %x",
d2, c2, d3, c3, cx, d4, c4)
}
}
func TestGaussJordan(t *testing.T) {
rs := NewRSEncoder(f, 2)
m := make([][]byte, 16)
for i := range m {
m[i] = make([]byte, 4)
m[i][i/8] = 1 << uint(i%8)
rs.ECC(m[i][:2], m[i][2:])
}
if false {
fmt.Printf("---\n")
for _, row := range m {
fmt.Printf("%x\n", row)
}
}
b := []uint{0, 1, 2, 3, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27}
for i := 0; i < 16; i++ {
bi := b[i]
if m[i][bi/8]&(1<<(7-bi%8)) == 0 {
for j := i + 1; ; j++ {
if j >= len(m) {
t.Errorf("lost track for %d", bi)
break
}
if m[j][bi/8]&(1<<(7-bi%8)) != 0 {
m[i], m[j] = m[j], m[i]
break
}
}
}
for j := i + 1; j < len(m); j++ {
if m[j][bi/8]&(1<<(7-bi%8)) != 0 {
for k := range m[j] {
m[j][k] ^= m[i][k]
}
}
}
}
if false {
fmt.Printf("---\n")
for _, row := range m {
fmt.Printf("%x\n", row)
}
}
for i := 15; i >= 0; i-- {
bi := b[i]
for j := i - 1; j >= 0; j-- {
if m[j][bi/8]&(1<<(7-bi%8)) != 0 {
for k := range m[j] {
m[j][k] ^= m[i][k]
}
}
}
}
if false {
fmt.Printf("---\n")
for _, row := range m {
fmt.Printf("%x", row)
out := make([]byte, 2)
if rs.ECC(row[:2], out); !bytes.Equal(out, row[2:]) {
fmt.Printf(" - want %x", out)
}
fmt.Printf("\n")
}
}
}
func BenchmarkECC(b *testing.B) {
data := []byte{0x10, 0x20, 0x0c, 0x56, 0x61, 0x80, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0x10, 0x20, 0x0c, 0x56, 0x61, 0x80, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11, 0xec, 0x11}
check := []byte{0x29, 0x41, 0xb3, 0x93, 0x8, 0xe8, 0xa3, 0xe7, 0x63, 0x8f}
out := make([]byte, len(check))
rs := NewRSEncoder(f, len(check))
for i := 0; i < b.N; i++ {
rs.ECC(data, out)
}
b.SetBytes(int64(len(data)))
if !bytes.Equal(out, check) {
fmt.Printf("have %#v want %#v\n", out, check)
}
}
func TestGen(t *testing.T) {
for i := 0; i < 256; i++ {
_, lg := f.gen(i)
if lg[0] != 0 {
t.Errorf("#%d: %x", i, lg)
}
}
}
func TestReducible(t *testing.T) {
var count = []int{1, 2, 3, 6, 9, 18, 30, 56, 99, 186} // oeis.org/A1037
for i, want := range count {
n := 0
for p := 1 << uint(i+2); p < 1<<uint(i+3); p++ {
if !reducible(p) {
n++
}
}
if n != want {
t.Errorf("#reducible(%d-bit) = %d, want %d", i+2, n, want)
}
}
}
func TestExhaustive(t *testing.T) {
for poly := 0x100; poly < 0x200; poly++ {
if reducible(poly) {
continue
}
α := 2
for !generates(α, poly) {
α++
}
f := NewField(poly, α)
for p := 0; p < 256; p++ {
for q := 0; q < 256; q++ {
fm := int(f.Mul(byte(p), byte(q)))
pm := mul(p, q, poly)
if fm != pm {
t.Errorf("NewField(%#x).Mul(%#x, %#x) = %#x, want %#x", poly, p, q, fm, pm)
}
}
}
}
}
func generates(α, poly int) bool {
x := α
for i := 0; i < 254; i++ {
if x == 1 {
return false
}
x = mul(x, α, poly)
}
return true
}