mirror of
https://github.com/gopl-zh/gopl-zh.github.com.git
synced 2025-10-19 05:22:19 +00:00
make zh2tw
This commit is contained in:
@@ -1,23 +1,23 @@
|
||||
## 3.2. 浮點數
|
||||
|
||||
Go语言提供了两种精度的浮点数, float32 和 float64. 它们的算术规范由 IEEE754 国际标准定义, 该浮点数规范被所有现代的CPU支持.
|
||||
Go語言提供了兩種精度的浮點數, float32 和 float64. 它們的算術規范由 IEEE754 國際標準定義, 該浮點數規范被所有現代的CPU支持.
|
||||
|
||||
这些数值类型的范围可以从很微小到很巨大. 浮点数的范围极限值可以在 matn 包找到. 常量 math.MaxFloat32 表示 float32 能表示的最大数值, 大约是 3.4e38, 对应的 math.MaxFloat64 常量大约是 1.8e308. 它们能表示的最小值近似分别是1.4e-45 和 4.9e-324.
|
||||
這些數值類型的范圍可以從很微小到很鉅大. 浮點數的范圍極限值可以在 matn 包找到. 常量 math.MaxFloat32 表示 float32 能表示的最大數值, 大約是 3.4e38, 對應的 math.MaxFloat64 常量大約是 1.8e308. 它們能表示的最小值近似分别是1.4e-45 和 4.9e-324.
|
||||
|
||||
一个 float32 类型的浮点数可以提供大约6个十进制数的精度, 而 float64 则可以提供约 15个十进制数精度; 通常应该优先使用 float64 类型, 因为 float32 类型的累计计算误差很容易扩散, 并且 float32 能精度表示的正整数并不是很大:
|
||||
一個 float32 類型的浮點數可以提供大約6個十進製數的精度, 而 float64 則可以提供約 15個十進製數精度; 通常應該優先使用 float64 類型, 因爲 float32 類型的纍計計算誤差很容易擴散, 併且 float32 能精度表示的正整數併不是很大:
|
||||
|
||||
```Go
|
||||
var f float32 = 16777216 // 1 << 24
|
||||
fmt.Println(f == f+1) // "true"!
|
||||
```
|
||||
|
||||
浮点数的字面值可以直接写小数部分, 想这样:
|
||||
浮點數的字面值可以直接寫小數部分, 想這樣:
|
||||
|
||||
```Go
|
||||
const e = 2.71828 // (approximately)
|
||||
```
|
||||
|
||||
小数点前面或后面的数字都可能被省略(例如 .707 或 1.). 很小或很大的数最好用科学计数法书写, 通过e或E来指定指数部分:
|
||||
小數點前面或後面的數字都可能被省略(例如 .707 或 1.). 很小或很大的數最好用科學計數法書寫, 通過e或E來指定指數部分:
|
||||
|
||||
```Go
|
||||
const Avogadro = 6.02214129e23
|
||||
@@ -25,7 +25,7 @@ const Planck = 6.62606957e-34
|
||||
```
|
||||
|
||||
|
||||
用 Printf 函数的 %g 参数打印浮点数, 将采用紧凑的表示形式打印, 并提供足够的精度, 但是对应表格的数据, 使用 %e (带指数) 或 %f 的形式打印可能更合适. 所有的这三个打印形式都可以指定打印的宽度和控制打印精度.
|
||||
用 Printf 函數的 %g 參數打印浮點數, 將采用緊湊的表示形式打印, 併提供足夠的精度, 但是對應表格的數據, 使用 %e (帶指數) 或 %f 的形式打印可能更合適. 所有的這三個打印形式都可以指定打印的寬度和控製打印精度.
|
||||
|
||||
```Go
|
||||
for x := 0; x < 8; x++ {
|
||||
@@ -33,7 +33,7 @@ for x := 0; x < 8; x++ {
|
||||
}
|
||||
```
|
||||
|
||||
上面代码打印e的幂, 打印精度是小数点后三个小数精度和8个字符宽度:
|
||||
上面代碼打印e的冪, 打印精度是小數點後三個小數精度和8個字符寬度:
|
||||
|
||||
```
|
||||
x = 0 e^x = 1.000
|
||||
@@ -46,21 +46,21 @@ x = 6 e^x = 403.429
|
||||
x = 7 e^x = 1096.633
|
||||
```
|
||||
|
||||
math 包中除了提供大量常用的数学函数外, 还提供了IEEE754标准中特殊数值的创建和测试: 正无穷大和负无穷大, 分别用于表示太大溢出的数字和除零的结果; 还有 NaN 非数, 一般用于表示无效的除法操作结果 0/0 或 Sqrt(-1).
|
||||
math 包中除了提供大量常用的數學函數外, 還提供了IEEE754標準中特殊數值的創建和測試: 正無窮大和負無窮大, 分别用於表示太大溢齣的數字和除零的結果; 還有 NaN 非數, 一般用於表示無效的除法操作結果 0/0 或 Sqrt(-1).
|
||||
|
||||
```Go
|
||||
var z float64
|
||||
fmt.Println(z, -z, 1/z, -1/z, z/z) // "0 -0 +Inf -Inf NaN"
|
||||
```
|
||||
|
||||
函数 math.IsNaN 用于测试一个数是否是非数 NaN, math.NaN 则返回非数对应的值. 虽然可以用 math.NaN 来表示一个非法的结果, 但是测试一个结果是否是非数 NaN 则是充满风险, 因为 NaN 和任何数都是不相等的:
|
||||
函數 math.IsNaN 用於測試一個數是否是非數 NaN, math.NaN 則返迴非數對應的值. 雖然可以用 math.NaN 來表示一個非法的結果, 但是測試一個結果是否是非數 NaN 則是充滿風險, 因爲 NaN 和任何數都是不相等的:
|
||||
|
||||
```Go
|
||||
nan := math.NaN()
|
||||
fmt.Println(nan == nan, nan < nan, nan > nan) // "false false false"
|
||||
```
|
||||
|
||||
如果一个函数返回的浮点数结果可能失败, 最好的做法是用单独的标志报告失败, 像这样:
|
||||
如果一個函數返迴的浮點數結果可能失敗, 最好的做法是用單獨的標誌報告失敗, 像這樣:
|
||||
|
||||
```Go
|
||||
func compute() (value float64, ok bool) {
|
||||
@@ -72,7 +72,7 @@ func compute() (value float64, ok bool) {
|
||||
}
|
||||
```
|
||||
|
||||
接下来的程序演示了浮点计算图形. 它是带有两个参数的 z = f(x, y) 函数的三维形式, 使用了可缩放矢量图形(SVG)格式输出, 一个用于矢量线绘制的XML标准. 图3.1显示了 sin(r)/r 函数的输出图形, 其中 r 是 sqrt(x*x+y*y).
|
||||
接下來的程序演示了浮點計算圖形. 它是帶有兩個參數的 z = f(x, y) 函數的三維形式, 使用了可縮放矢量圖形(SVG)格式輸齣, 一個用於矢量線繪製的XML標準. 圖3.1顯示了 sin(r)/r 函數的輸齣圖形, 其中 r 是 sqrt(x*x+y*y).
|
||||
|
||||

|
||||
|
||||
@@ -135,32 +135,32 @@ func f(x, y float64) float64 {
|
||||
}
|
||||
```
|
||||
|
||||
要注意的是 corner 返回了两个结果, 对应 corner 的坐标参数.
|
||||
要註意的是 corner 返迴了兩個結果, 對應 corner 的坐標參數.
|
||||
|
||||
要解释程序是如何工作的需要了解基本的几何知识, 但是我们可以跳过几何原理, 因为程序的重点是演示浮点运算. 程序的本质是三个不同的坐标系中映射关系, 如图3.2所示. 第一个是 100x100 的二维网格, 对应整数整数坐标(i,j), 从远处的 (0, 0) 位置开始. 我们从远处像前面绘制, 因此远处先绘制的多边形有可能被前面后绘制的多边形覆盖.
|
||||
要解釋程序是如何工作的需要了解基本的幾何知識, 但是我們可以跳過幾何原理, 因爲程序的重點是演示浮點運算. 程序的本質是三個不同的坐標繫中映射關繫, 如圖3.2所示. 第一個是 100x100 的二維網格, 對應整數整數坐標(i,j), 從遠處的 (0, 0) 位置開始. 我們從遠處像前面繪製, 因此遠處先繪製的多邊形有可能被前面後繪製的多邊形覆蓋.
|
||||
|
||||
第二个坐标系是一个三维的网格浮点坐标(x,y,z), 其中x和y是i和j的线性函数, 通过平移转换位center的中心, 然后用xyrange系数缩放. 高度z是函数f(x,y)的值.
|
||||
第二個坐標繫是一個三維的網格浮點坐標(x,y,z), 其中x和y是i和j的線性函數, 通過平移轉換位center的中心, 然後用xyrange繫數縮放. 高度z是函數f(x,y)的值.
|
||||
|
||||
第三个坐标系是一个二维的画布, 起点(0,0)在左上角. 画布中点的坐标用(sx, sy)表示. 我们使用等角投影将三维点
|
||||
第三個坐標繫是一個二維的畵布, 起點(0,0)在左上角. 畵布中點的坐標用(sx, sy)表示. 我們使用等角投影將三維點
|
||||
|
||||

|
||||
|
||||
(x,y,z) 投影到二维的画布中. 画布中从远处到右边的点对应较大的x值和较大的y值. 并且画布中x和y值越大, 则对应的z值越小. x和y的垂直和水平缩放系数来自30度角的正弦和余弦值. z的缩放系数0.4, 是一个任意选择的参数.
|
||||
(x,y,z) 投影到二維的畵布中. 畵布中從遠處到右邊的點對應較大的x值和較大的y值. 併且畵布中x和y值越大, 則對應的z值越小. x和y的垂直和水平縮放繫數來自30度角的正絃和餘絃值. z的縮放繫數0.4, 是一個任意選擇的參數.
|
||||
|
||||
对于二维网格中的每一个单位, main函数计算单元的四个顶点在画布中对应多边形ABCD的顶点, 其中B对应(i,j)顶点位置, A, C, 和 D是相邻的顶点, 然后输出SVG的绘制指令.
|
||||
對於二維網格中的每一個單位, main函數計算單元的四個頂點在畵布中對應多邊形ABCD的頂點, 其中B對應(i,j)頂點位置, A, C, 和 D是相鄰的頂點, 然後輸齣SVG的繪製指令.
|
||||
|
||||
**练习3.1:** 如果 f 函数返回的是无限制的 float64 值, 那么SVG文件可能输出无效的<polygon>多边形元素(虽然许多SVG渲染器会妥善处理这类问题). 修改程序跳过无效的多边形.
|
||||
**練習3.1:** 如果 f 函數返迴的是無限製的 float64 值, 那麽SVG文件可能輸齣無效的<polygon>多邊形元素(雖然許多SVG渲染器會妥善處理這類問題). 脩改程序跳過無效的多邊形.
|
||||
|
||||
**练习3.2:** 试验math包中其他函数的渲染图形. 你是否能输出一个egg box, moguls, 或 a saddle 图案?
|
||||
**練習3.2:** 試驗math包中其他函數的渲染圖形. 你是否能輸齣一個egg box, moguls, 或 a saddle 圖案?
|
||||
|
||||
**练习3.3:**根据高度给每个多边形上色, 那样峰值部将是红色(#ff0000), 谷部将是蓝色(#0000ff).
|
||||
**練習3.3:**根據高度給每個多邊形上色, 那樣峯值部將是紅色(#ff0000), 谷部將是藍色(#0000ff).
|
||||
|
||||
**3.4:** 参考1.7节Lissajous例子的函数, 构造一个web服务器, 用于计算函数曲面然后返回SVG数据给客户端. 服务器必须设置 Content-Type 头部:
|
||||
**3.4:** 參考1.7節Lissajous例子的函數, 構造一個web服務器, 用於計算函數麴面然後返迴SVG數據給客戶端. 服務器必鬚設置 Content-Type 頭部:
|
||||
|
||||
```Go
|
||||
w.Header().Set("Content-Type", "image/svg+xml")
|
||||
```
|
||||
|
||||
(这一步在Lissajous例子中不是必须的, 因为服务器使用标准的PNG图像格式, 可以根据前面的512个字节自动输出对应的头部.) 允许客户端通过HTTP请求参数设置高度, 宽度, 和颜色等参数.
|
||||
(這一步在Lissajous例子中不是必鬚的, 因爲服務器使用標準的PNG圖像格式, 可以根據前面的512個字節自動輸齣對應的頭部.) 允許客戶端通過HTTP請求參數設置高度, 寬度, 和顔色等參數.
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user