## 5.6. 匿名函数 拥有函数名的函数只能在包级语法块中被声明,通过函数字面量(function literal),我们可绕过这一限制,在任何表达式中表示一个函数值。函数字面量的语法和函数声明相似,区别在于func关键字后没有函数名。函数值字面量是一种表达式,它的值被称为匿名函数(anonymous function)。 函数字面量允许我们在使用函数时,再定义它。通过这种技巧,我们可以改写之前对strings.Map的调用: ```Go strings.Map(func(r rune) rune { return r + 1 }, "HAL-9000") ``` 更为重要的是,通过这种方式定义的函数可以访问完整的词法环境(lexical environment),这意味着在函数中定义的内部函数可以引用该函数的变量,如下例所示: gopl.io/ch5/squares ```Go // squares返回一个匿名函数。 // 该匿名函数每次被调用时都会返回下一个数的平方。 func squares() func() int { var x int return func() int { x++ return x * x } } func main() { f := squares() fmt.Println(f()) // "1" fmt.Println(f()) // "4" fmt.Println(f()) // "9" fmt.Println(f()) // "16" } ``` 函数squares返回另一个类型为 func() int 的函数。对squares的一次调用会生成一个局部变量x并返回一个匿名函数。每次调用匿名函数时,该函数都会先使x的值加1,再返回x的平方。第二次调用squares时,会生成第二个x变量,并返回一个新的匿名函数。新匿名函数操作的是第二个x变量。 squares的例子证明,函数值不仅仅是一串代码,还记录了状态。在squares中定义的匿名内部函数可以访问和更新squares中的局部变量,这意味着匿名函数和squares中,存在变量引用。这就是函数值属于引用类型和函数值不可比较的原因。Go使用闭包(closures)技术实现函数值,Go程序员也把函数值叫做闭包。 通过这个例子,我们看到变量的生命周期不由它的作用域决定:squares返回后,变量x仍然隐式的存在于f中。 接下来,我们讨论一个有点学术性的例子,考虑这样一个问题:给定一些计算机课程,每个课程都有前置课程,只有完成了前置课程才可以开始当前课程的学习;我们的目标是选择出一组课程,这组课程必须确保按顺序学习时,能全部被完成。每个课程的前置课程如下: gopl.io/ch5/toposort ```Go // prereqs记录了每个课程的前置课程 var prereqs = map[string][]string{ "algorithms": {"data structures"}, "calculus": {"linear algebra"}, "compilers": { "data structures", "formal languages", "computer organization", }, "data structures": {"discrete math"}, "databases": {"data structures"}, "discrete math": {"intro to programming"}, "formal languages": {"discrete math"}, "networks": {"operating systems"}, "operating systems": {"data structures", "computer organization"}, "programming languages": {"data structures", "computer organization"}, } ``` 这类问题被称作拓扑排序。从概念上说,前置条件可以构成有向图。图中的顶点表示课程,边表示课程间的依赖关系。显然,图中应该无环,这也就是说从某点出发的边,最终不会回到该点。下面的代码用深度优先搜索了整张图,获得了符合要求的课程序列。 ```Go func main() { for i, course := range topoSort(prereqs) { fmt.Printf("%d:\t%s\n", i+1, course) } } func topoSort(m map[string][]string) []string { var order []string seen := make(map[string]bool) var visitAll func(items []string) visitAll = func(items []string) { for _, item := range items { if !seen[item] { seen[item] = true visitAll(m[item]) order = append(order, item) } } } var keys []string for key := range m { keys = append(keys, key) } sort.Strings(keys) visitAll(keys) return order } ``` 当匿名函数需要被递归调用时,我们必须首先声明一个变量(在上面的例子中,我们首先声明了 visitAll),再将匿名函数赋值给这个变量。如果不分成两步,函数字面量无法与visitAll绑定,我们也无法递归调用该匿名函数。 ```Go visitAll := func(items []string) { // ... visitAll(m[item]) // compile error: undefined: visitAll // ... } ``` 在toposort程序的输出如下所示,它的输出顺序是大多人想看到的固定顺序输出,但是这需要我们多花点心思才能做到。哈希表prepreqs的value是遍历顺序固定的切片,而不再试遍历顺序随机的map,所以我们对prereqs的key值进行排序,保证每次运行toposort程序,都以相同的遍历顺序遍历prereqs。 ``` 1: intro to programming 2: discrete math 3: data structures 4: algorithms 5: linear algebra 6: calculus 7: formal languages 8: computer organization 9: compilers 10: databases 11: operating systems 12: networks 13: programming languages ``` 让我们回到findLinks这个例子。我们将代码移动到了links包下,将函数重命名为Extract,在第八章我们会再次用到这个函数。新的匿名函数被引入,用于替换原来的visit函数。该匿名函数负责将新连接添加到切片中。在Extract中,使用forEachNode遍历HTML页面,由于Extract只需要在遍历结点前操作结点,所以forEachNode的post参数被传入nil。 gopl.io/ch5/links ```Go // Package links provides a link-extraction function. package links import ( "fmt" "net/http" "golang.org/x/net/html" ) // Extract makes an HTTP GET request to the specified URL, parses // the response as HTML, and returns the links in the HTML document. func Extract(url string) ([]string, error) { resp, err := http.Get(url) if err != nil { return nil, err } if resp.StatusCode != http.StatusOK { resp.Body.Close() return nil, fmt.Errorf("getting %s: %s", url, resp.Status) } doc, err := html.Parse(resp.Body) resp.Body.Close() if err != nil { return nil, fmt.Errorf("parsing %s as HTML: %v", url, err) } var links []string visitNode := func(n *html.Node) { if n.Type == html.ElementNode && n.Data == "a" { for _, a := range n.Attr { if a.Key != "href" { continue } link, err := resp.Request.URL.Parse(a.Val) if err != nil { continue // ignore bad URLs } links = append(links, link.String()) } } } forEachNode(doc, visitNode, nil) return links, nil } ``` 上面的代码对之前的版本做了改进,现在links中存储的不是href属性的原始值,而是通过resp.Request.URL解析后的值。解析后,这些连接以绝对路径的形式存在,可以直接被http.Get访问。 网页抓取的核心问题就是如何遍历图。在topoSort的例子中,已经展示了深度优先遍历,在网页抓取中,我们会展示如何用广度优先遍历图。在第8章,我们会介绍如何将深度优先和广度优先结合使用。 下面的函数实现了广度优先算法。调用者需要输入一个初始的待访问列表和一个函数f。待访问列表中的每个元素被定义为string类型。广度优先算法会为每个元素调用一次f。每次f执行完毕后,会返回一组待访问元素。这些元素会被加入到待访问列表中。当待访问列表中的所有元素都被访问后,breadthFirst函数运行结束。为了避免同一个元素被访问两次,代码中维护了一个map。 gopl.io/ch5/findlinks3 ```Go // breadthFirst calls f for each item in the worklist. // Any items returned by f are added to the worklist. // f is called at most once for each item. func breadthFirst(f func(item string) []string, worklist []string) { seen := make(map[string]bool) for len(worklist) > 0 { items := worklist worklist = nil for _, item := range items { if !seen[item] { seen[item] = true worklist = append(worklist, f(item)...) } } } } ``` 就像我们在章节3解释的那样,append的参数“f(item)...”,会将f返回的一组元素一个个添加到worklist中。 在我们网页抓取器中,元素的类型是url。crawl函数会将URL输出,提取其中的新链接,并将这些新链接返回。我们会将crawl作为参数传递给breadthFirst。 ```go func crawl(url string) []string { fmt.Println(url) list, err := links.Extract(url) if err != nil { log.Print(err) } return list } ``` 为了使抓取器开始运行,我们用命令行输入的参数作为初始的待访问url。 ```Go func main() { // Crawl the web breadth-first, // starting from the command-line arguments. breadthFirst(crawl, os.Args[1:]) } ``` 让我们从 https://golang.org 开始,下面是程序的输出结果: ``` $ go build gopl.io/ch5/findlinks3 $ ./findlinks3 https://golang.org https://golang.org/ https://golang.org/doc/ https://golang.org/pkg/ https://golang.org/project/ https://code.google.com/p/go-tour/ https://golang.org/doc/code.html https://www.youtube.com/watch?v=XCsL89YtqCs http://research.swtch.com/gotour ``` 当所有发现的链接都已经被访问或电脑的内存耗尽时,程序运行结束。 **练习5.10:** 重写topoSort函数,用map代替切片并移除对key的排序代码。验证结果的正确性(结果不唯一)。 **练习5.11:** 现在线性代数的老师把微积分设为了前置课程。完善topSort,使其能检测有向图中的环。 **练习5.12:** gopl.io/ch5/outline2(5.5节)的startElement和endElement共用了全局变量depth,将它们修改为匿名函数,使其共享outline中的局部变量。 **练习5.13:** 修改crawl,使其能保存发现的页面,必要时,可以创建目录来保存这些页面。只保存来自原始域名下的页面。假设初始页面在golang.org下,就不要保存vimeo.com下的页面。 **练习5.14:** 使用breadthFirst遍历其他数据结构。比如,topoSort例子中的课程依赖关系(有向图)、个人计算机的文件层次结构(树);你所在城市的公交或地铁线路(无向图)。 ### 5.6.1. 警告:捕获迭代变量 本节,将介绍Go词法作用域的一个陷阱。请务必仔细的阅读,弄清楚发生问题的原因。即使是经验丰富的程序员也会在这个问题上犯错误。 考虑这样一个问题:你被要求首先创建一些目录,再将目录删除。在下面的例子中我们用函数值来完成删除操作。下面的示例代码需要引入os包。为了使代码简单,我们忽略了所有的异常处理。 ```Go var rmdirs []func() for _, d := range tempDirs() { dir := d // NOTE: necessary! os.MkdirAll(dir, 0755) // creates parent directories too rmdirs = append(rmdirs, func() { os.RemoveAll(dir) }) } // ...do some work… for _, rmdir := range rmdirs { rmdir() // clean up } ``` 你可能会感到困惑,为什么要在循环体中用循环变量d赋值一个新的局部变量,而不是像下面的代码一样直接使用循环变量dir。需要注意,下面的代码是错误的。 ```go var rmdirs []func() for _, dir := range tempDirs() { os.MkdirAll(dir, 0755) rmdirs = append(rmdirs, func() { os.RemoveAll(dir) // NOTE: incorrect! }) } ``` 问题的原因在于循环变量的作用域。在上面的程序中,for循环语句引入了新的词法块,循环变量dir在这个词法块中被声明。在该循环中生成的所有函数值都共享相同的循环变量。需要注意,函数值中记录的是循环变量的内存地址,而不是循环变量某一时刻的值。以dir为例,后续的迭代会不断更新dir的值,当删除操作执行时,for循环已完成,dir中存储的值等于最后一次迭代的值。这意味着,每次对os.RemoveAll的调用删除的都是相同的目录。 通常,为了解决这个问题,我们会引入一个与循环变量同名的局部变量,作为循环变量的副本。比如下面的变量dir,虽然这看起来很奇怪,但却很有用。 ```Go for _, dir := range tempDirs() { dir := dir // declares inner dir, initialized to outer dir // ... } ``` 这个问题不仅存在基于range的循环,在下面的例子中,对循环变量i的使用也存在同样的问题: ```Go var rmdirs []func() dirs := tempDirs() for i := 0; i < len(dirs); i++ { os.MkdirAll(dirs[i], 0755) // OK rmdirs = append(rmdirs, func() { os.RemoveAll(dirs[i]) // NOTE: incorrect! }) } ``` 如果你使用go语句(第八章)或者defer语句(5.8节)会经常遇到此类问题。这不是go或defer本身导致的,而是因为它们都会等待循环结束后,再执行函数值。