## 8.8. 示例: 并发的目录遍历 在本小节中,我们会创建一个程序来生成指定目录的硬盘使用情况报告,这个程序和Unix里的du工具比较相似。大多数工作用下面这个walkDir函数来完成,这个函数使用dirents函数来枚举一个目录下的所有入口。 gopl.io/ch8/du1 ```go // walkDir recursively walks the file tree rooted at dir // and sends the size of each found file on fileSizes. func walkDir(dir string, fileSizes chan<- int64) { for _, entry := range dirents(dir) { if entry.IsDir() { subdir := filepath.Join(dir, entry.Name()) walkDir(subdir, fileSizes) } else { fileSizes <- entry.Size() } } } // dirents returns the entries of directory dir. func dirents(dir string) []os.FileInfo { entries, err := ioutil.ReadDir(dir) if err != nil { fmt.Fprintf(os.Stderr, "du1: %v\n", err) return nil } return entries } ``` ioutil.ReadDir函数会返回一个os.FileInfo类型的slice,os.FileInfo类型也是os.Stat这个函数的返回值。对每一个子目录而言,walkDir会递归地调用其自身,同时也在递归里获取每一个文件的信息。walkDir函数会向fileSizes这个channel发送一条消息。这条消息包含了文件的字节大小。 下面的主函数,用了两个goroutine。后台的goroutine调用walkDir来遍历命令行给出的每一个路径并最终关闭fileSizes这个channel。主goroutine会对其从channel中接收到的文件大小进行累加,并输出其和。 ```go package main import ( "flag" "fmt" "io/ioutil" "os" "path/filepath" ) func main() { // Determine the initial directories. flag.Parse() roots := flag.Args() if len(roots) == 0 { roots = []string{"."} } // Traverse the file tree. fileSizes := make(chan int64) go func() { for _, root := range roots { walkDir(root, fileSizes) } close(fileSizes) }() // Print the results. var nfiles, nbytes int64 for size := range fileSizes { nfiles++ nbytes += size } printDiskUsage(nfiles, nbytes) } func printDiskUsage(nfiles, nbytes int64) { fmt.Printf("%d files %.1f GB\n", nfiles, float64(nbytes)/1e9) } ``` 这个程序会在打印其结果之前卡住很长时间。 ``` $ go build gopl.io/ch8/du1 $ ./du1 $HOME /usr /bin /etc 213201 files 62.7 GB ``` 如果在运行的时候能够让我们知道处理进度的话想必更好。但是,如果简单地把printDiskUsage函数调用移动到循环里会导致其打印出成百上千的输出。 下面这个du的变种会间歇打印内容,不过只有在调用时提供了-v的flag才会显示程序进度信息。在roots目录上循环的后台goroutine在这里保持不变。主goroutine现在使用了计时器来每500ms生成事件,然后用select语句来等待文件大小的消息来更新总大小数据,或者一个计时器的事件来打印当前的总大小数据。如果-v的flag在运行时没有传入的话,tick这个channel会保持为nil,这样在select里的case也就相当于被禁用了。 gopl.io/ch8/du2 ```go var verbose = flag.Bool("v", false, "show verbose progress messages") func main() { // ...start background goroutine... // Print the results periodically. var tick <-chan time.Time if *verbose { tick = time.Tick(500 * time.Millisecond) } var nfiles, nbytes int64 loop: for { select { case size, ok := <-fileSizes: if !ok { break loop // fileSizes was closed } nfiles++ nbytes += size case <-tick: printDiskUsage(nfiles, nbytes) } } printDiskUsage(nfiles, nbytes) // final totals } ``` 由于我们的程序不再使用range循环,第一个select的case必须显式地判断fileSizes的channel是不是已经被关闭了,这里可以用到channel接收的二值形式。如果channel已经被关闭了的话,程序会直接退出循环。这里的break语句用到了标签break,这样可以同时终结select和for两个循环;如果没有用标签就break的话只会退出内层的select循环,而外层的for循环会使之进入下一轮select循环。 现在程序会悠闲地为我们打印更新流: ``` $ go build gopl.io/ch8/du2 $ ./du2 -v $HOME /usr /bin /etc 28608 files 8.3 GB 54147 files 10.3 GB 93591 files 15.1 GB 127169 files 52.9 GB 175931 files 62.2 GB 213201 files 62.7 GB ``` 然而这个程序还是会花上很长时间才会结束。完全可以并发调用walkDir,从而发挥磁盘系统的并行性能。下面这个第三个版本的du,会对每一个walkDir的调用创建一个新的goroutine。它使用sync.WaitGroup(§8.5)来对仍旧活跃的walkDir调用进行计数,另一个goroutine会在计数器减为零的时候将fileSizes这个channel关闭。 gopl.io/ch8/du3 ```go func main() { // ...determine roots... // Traverse each root of the file tree in parallel. fileSizes := make(chan int64) var n sync.WaitGroup for _, root := range roots { n.Add(1) go walkDir(root, &n, fileSizes) } go func() { n.Wait() close(fileSizes) }() // ...select loop... } func walkDir(dir string, n *sync.WaitGroup, fileSizes chan<- int64) { defer n.Done() for _, entry := range dirents(dir) { if entry.IsDir() { n.Add(1) subdir := filepath.Join(dir, entry.Name()) go walkDir(subdir, n, fileSizes) } else { fileSizes <- entry.Size() } } } ``` 由于这个程序在高峰期会创建成百上千的goroutine,我们需要修改dirents函数,用计数信号量来阻止他同时打开太多的文件,就像我们在8.7节中的并发爬虫一样: ```go // sema is a counting semaphore for limiting concurrency in dirents. var sema = make(chan struct{}, 20) // dirents returns the entries of directory dir. func dirents(dir string) []os.FileInfo { sema <- struct{}{} // acquire token defer func() { <-sema }() // release token // ... ``` 这个版本比之前那个快了好几倍,尽管其具体效率还是和你的运行环境,机器配置相关。 **练习 8.9:** 编写一个du工具,每隔一段时间将root目录下的目录大小计算并显示出来。