## 13.3. 示例: 深度相等判断 来自reflect包的DeepEqual函数可以对两个值进行深度相等判断。DeepEqual函数使用内建的==比较操作符对基础类型进行相等判断,对于复合类型则递归该变量的每个基础类型然后做类似的比较判断。因为它可以工作在任意的类型上,甚至对于一些不支持==操作运算符的类型也可以工作,因此在一些测试代码中广泛地使用该函数。比如下面的代码是用DeepEqual函数比较两个字符串slice是否相等。 ```Go func TestSplit(t *testing.T) { got := strings.Split("a:b:c", ":") want := []string{"a", "b", "c"}; if !reflect.DeepEqual(got, want) { /* ... */ } } ``` 尽管DeepEqual函数很方便,而且可以支持任意的数据类型,但是它也有不足之处。例如,它将一个nil值的map和非nil值但是空的map视作不相等,同样nil值的slice 和非nil但是空的slice也视作不相等。 ```Go var a, b []string = nil, []string{} fmt.Println(reflect.DeepEqual(a, b)) // "false" var c, d map[string]int = nil, make(map[string]int) fmt.Println(reflect.DeepEqual(c, d)) // "false" ``` 我们希望在这里实现一个自己的Equal函数,用于比较类型的值。和DeepEqual函数类似的地方是它也是基于slice和map的每个元素进行递归比较,不同之处是它将nil值的slice(map类似)和非nil值但是空的slice视作相等的值。基础部分的比较可以基于reflect包完成,和12.3章的Display函数的实现方法类似。同样,我们也定义了一个内部函数equal,用于内部的递归比较。读者目前不用关心seen参数的具体含义。对于每一对需要比较的x和y,equal函数首先检测它们是否都有效(或都无效),然后检测它们是否是相同的类型。剩下的部分是一个巨大的switch分支,用于相同基础类型的元素比较。因为页面空间的限制,我们省略了一些相似的分支。 gopl.io/ch13/equal ```Go func equal(x, y reflect.Value, seen map[comparison]bool) bool { if !x.IsValid() || !y.IsValid() { return x.IsValid() == y.IsValid() } if x.Type() != y.Type() { return false } // ...cycle check omitted (shown later)... switch x.Kind() { case reflect.Bool: return x.Bool() == y.Bool() case reflect.String: return x.String() == y.String() // ...numeric cases omitted for brevity... case reflect.Chan, reflect.UnsafePointer, reflect.Func: return x.Pointer() == y.Pointer() case reflect.Ptr, reflect.Interface: return equal(x.Elem(), y.Elem(), seen) case reflect.Array, reflect.Slice: if x.Len() != y.Len() { return false } for i := 0; i < x.Len(); i++ { if !equal(x.Index(i), y.Index(i), seen) { return false } } return true // ...struct and map cases omitted for brevity... } panic("unreachable") } ``` 和前面的建议一样,我们并不公开reflect包相关的接口,所以导出的函数需要在内部自己将变量转为reflect.Value类型。 ```Go // Equal reports whether x and y are deeply equal. func Equal(x, y interface{}) bool { seen := make(map[comparison]bool) return equal(reflect.ValueOf(x), reflect.ValueOf(y), seen) } type comparison struct { x, y unsafe.Pointer t reflect.Type } ``` 为了确保算法对于有环的数据结构也能正常退出,我们必须记录每次已经比较的变量,从而避免进入第二次的比较。Equal函数分配了一组用于比较的结构体,包含每对比较对象的地址(unsafe.Pointer形式保存)和类型。我们要记录类型的原因是,有些不同的变量可能对应相同的地址。例如,如果x和y都是数组类型,那么x和x[0]将对应相同的地址,y和y[0]也是对应相同的地址,这可以用于区分x与y之间的比较或x[0]与y[0]之间的比较是否进行过了。 ```Go // cycle check if x.CanAddr() && y.CanAddr() { xptr := unsafe.Pointer(x.UnsafeAddr()) yptr := unsafe.Pointer(y.UnsafeAddr()) if xptr == yptr { return true // identical references } c := comparison{xptr, yptr, x.Type()} if seen[c] { return true // already seen } seen[c] = true } ``` 这是Equal函数用法的例子: ```Go fmt.Println(Equal([]int{1, 2, 3}, []int{1, 2, 3})) // "true" fmt.Println(Equal([]string{"foo"}, []string{"bar"})) // "false" fmt.Println(Equal([]string(nil), []string{})) // "true" fmt.Println(Equal(map[string]int(nil), map[string]int{})) // "true" ``` Equal函数甚至可以处理类似12.3章中导致Display陷入死循环的带有环的数据。 ```Go // Circular linked lists a -> b -> a and c -> c. type link struct { value string tail *link } a, b, c := &link{value: "a"}, &link{value: "b"}, &link{value: "c"} a.tail, b.tail, c.tail = b, a, c fmt.Println(Equal(a, a)) // "true" fmt.Println(Equal(b, b)) // "true" fmt.Println(Equal(c, c)) // "true" fmt.Println(Equal(a, b)) // "false" fmt.Println(Equal(a, c)) // "false" ``` **练习 13.1:** 定义一个深比较函数,对于十亿以内的数字比较,忽略类型差异。 **练习 13.2:** 编写一个函数,报告其参数是否为循环数据结构。