
The Limbo Programming Language

Dennis M. Ritchie
(Revised 2005 by Vita Nuova)

Limbo is a programming language intended for applications running distributed systems on
small computers. It supports modular programming, strong type checking at compile­ and run­
time, interprocess communication over typed channels, automatic garbage collection, and simple
abstract data types. It is designed for safe execution even on small machines without hardware
memory protection.

In its implementation for the Inferno operating system, object programs generated by the
Limbo compiler run using an interpreter for a fixed virtual machine. Inferno and its accompany­
ing virtual machine run either stand­alone on bare hardware or as an application under conven­
tional operating systems like Unix, Windows 2000, Linux, FreeBSD, MacOSX, and Plan 9. For
most architectures, including Intel x86, ARM, PowerPC, MIPS and Sparc, Limbo object programs
are transformed on­the­fly into instructions for the underlying hardware.

1. Overview and introduction

A Limbo application consists of one or more modules , each of which supplies an interface decla­
ration and an implementation part. A module that uses another module includes its declaration
part. During execution, a module dynamically attaches another module by stating the other
module’s type identifier and a place from which to load the object code for its implementation.

A module declaration specifies the functions and data it will make visible, its data types, and
constants. Its implementation part defines the functions and data visible at its interface and any
functions associated with its data types; it may also contain definitions for functions used only
internally and for data local to the module.

Here is a simple module to illustrate the flavour of the language.

1 implement Command;

2 include "sys.m";

3 include "draw.m";

4 sys: Sys;

5 Command: module

{

6 init: fn (ctxt: ref Draw->Context, argv: list of string);

7 };

­ 2 ­

8 # The canonical "Hello world" program, enhanced

9 init(ctxt: ref Draw->Context, argv: list of string)

10 {

11 sys = load Sys Sys->PATH;

12 sys->print("hello world\n");

13 for (; argv!=nil; argv = tl argv)

14 sys->print("%s ", hd argv);

15 sys->print("\n");

16 }

A quick glance at the program reveals that the syntax of Limbo is influenced by C in its expressions, state-
ments, and some conventions (for example, look at lines 13-14), and also by Pascal and its successors (the
declarations on lines 4, 6, 9). When executed in the Inferno environment, the program writeshello 1
world somewhere, then echoes its arguments.

Let’s look at the program line­by­line. It begins (line 1) by saying that this is the implementa­
tion of module Command. Line 2 includes a file (found in a way analogous to C’s #include
mechanism) named sys.m . This file defines the interface to module Sys ; it says, in part,

Sys: module {

PATH: con "$Sys";

. . .

print: fn (s: string, *): int;

. . .

};

This declaresSys 1 to be the type name for a module containing among other things a function
named print ; the first argument of print is a string. The * in the argument list specifies that
further arguments, of unspecified type, may be given.

Line 3 includes draw.m ; only one piece of information, mentioned below, is used from it. Line
4 declares the variable sys to be of type Sys ; its name will be visible throughout the remainder
of the file describing this module. It will be used later to refer to an instance of the Sys module.
This declaration initializes it to nil ; it still needs to be set to a useful value.

Lines 5­7 constitute the declaration of Command, the module being implemented. It contains
only a function named init , with two arguments, a ref Draw->Context and a list of strings,
and it doesn’t return any value. The ref Draw->Context argument would be used if the pro­
gram did any graphics; it is a data type defined in draw.m and refers to the display. Since the
program just writes text, it won’t be used. The init function isn’t special to the Limbo language,
but it is conventional in the environment, like main in C.

In a module designed to be useful to other modules in an application, it would be wise to take
the module declaration for Commandout, put it in a separate file called command.m and use
include command.m to allow this module and others to refer to it. It is called, for example, by
the program loader in the Inferno system to start the execution of applications.

Line 8 is a comment; everything from the # to the end of line is ignored.

Line 9 begins the definition for the init function that was promised in the module’s declara­
tion (line 6). The argument that is a list of strings is named argv .

Line 11 connects the program being written to the Sys module. The first token after load is
the target module’s name as defined by its interface (here found in the include on line 2) The
next token is the place where the code for the module can be found; it is a string that usually
names a file. Conventionally, in the Inferno system, each module contains a constant declaration
for the name PATHas a string that names the file where the object module can be found. Loading
the file is performed dynamically during execution except for a few modules built into the execu­
tion environment. (These include Sys ; this accounts for the peculiar file name $Sys as the value
of PATH.)

­ 3 ­

The value of load is a reference to the named module; line 11 assigns it to the variable sys for
later use. The load operator dynamically loads the code for the named module if it is not
already present and instantiates a new instance of it.

Line 12 starts the work by printing a familiar message, using the facilities provided by module
Sys through its handle sys ; the notation sys->print(...) means to call the print function
of the module referred to by sys . The interface of Sys resembles a binding to some of the mech­
anisms of Unix and the ISO/ANSI C library.

The loop at lines 13­14 takes the list of string argument to init and iterates over it using
the hd (head) and tl (tail) operators. When executed, this module combines the traditional
‘Hello world’ and echo .

2. Lexical conventions

There are several kinds of tokens: keywords, identifiers, constants, strings, expression opera­
tors, and other separators. White space (blanks, tabs, new­lines) is ignored except that it serves to
separate tokens; sometimes it is required to separate tokens. If the input has been parsed into
tokens up to a particular character, the next token is taken to include the longest string of charac­
ters that could constitute a token.

The native character set of Limbo is Unicode, which is identical with the first 16­bit plane of the
ISO 10646 standard. Any Unicode character may be used in comments, or in strings and charac­
ter constants. The implementation assumes that source files use the UTF­8 representation, in
which 16­bit Unicode characters are represented as sequences of one, two, or three bytes.

2.1. Comments

Comments begin with the # character and extend to the end of the line. Comments are
ignored.

2.2. Identifiers

An identifier is a sequence of letters and digits of which the first is a letter. Letters are the Uni­
code characters a through z and A through Z, together with the underscore character, and all
Unicode characters with encoded values greater than 160 (A0 hexadecimal, the beginning of the
range corresponding to Latin­1).

Only the first 256 characters in an identifier are significant.

2.3. Keywords

The following identifiers are reserved for use as keywords, and may not be used otherwise:

adt alt array big

break byte case chan

con continue cyclic do

else exit fn for

hd if implement import

include int len list

load module nil of

or pick real ref

return self spawn string

tagof tl to type

while

The wordunion 1 is not currently used by the language.

2.4. Constants

There are several kinds of constants for denoting values of the basic types.

­ 4 ­

2.4.1. Integer constants

Integer constants have type int or big . They can be represented in several ways.

Decimal integer constants consist of a sequence of decimal digits. A constant with an explicit
radix consists of a decimal radix followed by R or r followed by the digits of the number. The
radix is between 2 and 36 inclusive; digits above 10 in the number are expressed using letters A to
Z or a to z . For example, 16r20 has value 32.

The type of a decimal or explicit­radix number is big if its value exceeds 231−1, otherwise it is
int .

Character constants consist of a single Unicode character enclosed within single­quote charac­
ters ’ . Inside the quotes the following escape sequences represent special characters:

\\ backslash
\’ single quote
\" double quote
\a bell (BEL)
\b backspace (BS)
\t horizontal tabulation (HT)
\n line feed (LF)
\v vertical tabulation (VT)
\f form feed (FF)
\r carriage return (CR)
\u dddd Unicode character named by 4 hexadecimal digits
\0 NUL

Character constants have typeint 1.

2.4.2. Real constants

Real constants consist of a sequence of decimal digits containing one period . and optionally
followed by e or E and then by a possibly signed integer. If there is an explicit exponent, the
period is not required. Real constants have type real .

2.4.3. Strings

String constants are sequences of Unicode characters contained in double quotes. They cannot
extend across source lines. The same escape sequences listed above for character constants are
usable within string constants. Strings have type string .

2.4.4. The nil constant

The constant nil denotes a reference to nothing. It may be used where an object of a reference
type is expected; otherwise uninitialized values of reference type start off with this value, it can
be assigned to reference objects, and reference types can be tested for equality with it. (The key­
word has other uses as well.)

2.5. Operators and other separators

The operators are

+ - * / % & | ^

== < > <= >= != << >>

&& || <- ::

= += -= *= /= %= &= |= ^= <<= >>=

:=

~ ++ -- ! **

The other separators are

­ 5 ­

: ; () { } []

, . -> =>

3. Syntax notation

In this manual, Limbo syntax is described by a modified BNF in which syntactic categories are
named in an italic font, and literals in typewriter font. Alternative productions are listed on
separate lines, and an optional symbol is indicated with the subscript ‘‘opt.’’

4. Types and objects

Limbo has three kinds of objects. Data objects exist in the storage associated with a module;
they can be manipulated by arithmetic operations, assignment, selection of component entities,
and other concrete operations. Each data object has a type that determines what can be stored in
it and what operations are applicable.

The second kind of object is the function . Functions are characterized by the types of the argu­
ments they accept and the values they return, and are associated with the modules in which they
are defined. Their names can be made visible in their module’s declaration, or they can be encap­
sulated within the adt (abstract data types) of their modules, or they can exist privately within
their module.

Finally, Limbo programs are organized into modules : a named collection of constants, abstract
data types, data, and functions made available by that module. A module declaration displays
the members visible to other modules; the module’s implementation defines both the publicly
visible members and its private parts, including the data objects it uses. A module that wishes to
use the facilities of another includes its declaration in order to understand what it exports, but
before using them it explicitly loads the new module.

4.1. Types

Limbo has several basic types, some built­in higher abstractions, and other ways of composing
new types. In declarations and some other places, constructions naming a type are used. The
syntax is:

type:
data-type
function-type

Functions will be discussed in §7 below. First, data types will be explored.

4.2. Data types

The syntax of data types is

­ 6 ­

data-type:
byte
int
big
real
string
tuple-type
array of data-type
list of data-type
chan of data-type
adt-type
ref adt-type
ref function-type
module-type
module-qualified-type
type-name

data-type-list:
data-type
data-type-list, data-type

Objects of most data types havevalue1 semantics; when they are assigned or passed to functions, the
destination receives a copy of the object. Subsequent changes to the assigned object itself have no
effect on the original object. The value types are byte , int , big , real , string , the tuple
types, and abstract data types or adt . The rest have reference semantics. When they are assigned,
the quantity actually assigned is a reference to (a pointer to) an underlying object that is not
copied; thus changes or operations on the assigned value affect the original object. Reference
types include lists, arrays, channels, modules, ref adt , and ref fn types.

4.2.1. Basic types

The five basic data types are denoted by byte , int , big , real , and string .

Bytes are unsigned 8­bit quantities.

Integers (int) are 32­bit signed quantities represented in two’s complement notation. Large
integers (big) are 64­bit signed quantities represented in two’s complement notation.

Real numbers (real) are 64­bit quantities represented in the IEEE long floating notation.

The byte , int , big , and real types are collectively called arithmetic types.

Strings are rows of Unicode characters. They may be concatenated and extended character­
by­character. When a string is indexed with a single subscript, it yields an integer with the Uni­
code encoding of the character; when it is indexed by a range, it yields another string.

4.2.2. Tuple type

The tuple type, denoted

tuple-type:
(data-type-list)

is a type consisting of an ordered collection of two or more objects, each having its own data type. For
each tuple type, the types of the members are fixed, but need not be identical; for example, a function might
return a tuple containing an integer and a string. Each tuple type is characterized solely by the the order
and identity of the types it contains. Objects of tuple type may be assigned to a list of identifiers (to pick
out the components), and a parenthesized, comma-separated list of expressions denotes a tuple.

­ 7 ­

4.2.3. Array types

The array type describes a dynamically­sized row of objects, all of the same type; it is indexed
starting from 0. An array type is denoted by

array of data-type

The size of an array is not part of its type; instead it is part of the value. Thedata­type1 may itself be an
array, to achieve a multidimensional array.

4.2.4. List types

A list is a sequence of like­typed objects; its denotation is

list of data-type

A list is a stack-like object, optimized for a few operations: get the head (the first object), get the tail (the
rest of the list), place an object at the beginning.

4.2.5. Channel types

A channel , whose type is written

chan of data-type

is a communication mechanism capable of sending and receiving objects of the specified type to another
agent in the system. Channels may be used to communicate between local processes; using library proce-
dures, they may be connected to named destinations. In either casesend1 and receive operations may be
directed to them. For example,

chan of (int, string)

is the type of a channel that transmits tuples consisting of an integer and an string. Once an instance of
such a channel (sayc1) has been declared and initialized, the statement

c <-= (123, "Hello");

sends such a tuple across it.

4.2.6. Abstract data types

An abstract data type or adt is an object that can contain data objects of several different types
and declare functions that operate on them. The syntax for declaring an adt is given later. Once
an adt has been declared, the identifier associated with it becomes a data­type name.

adt-type:
identifier
module-qualified-type

There is also a ref adt type representing a reference (pointer) to an adt . It is denoted

ref adt-type

where the identifier is the name of anadt 1 type.

4.2.7. Module types

A module type name is an identifier:

module-type:
identifier

The identifier is declared as a module identifier by amodule­declaration1, as described in §6.5 below.
An object of module type serves as a handle for the module, and is used to access its functions.

­ 8 ­

4.2.8. Module­qualified type

When an adt is declared within a module declaration, the type name of that adt is not gener­
ally visible to the rest of the program unless a specific import request is given (see §6.6, §10
below). Without such a request, when adt objects implemented by a module are declared by a
client of that module, the adt type name is qualified:

module-qualified-type:
identifier -> identifier

Here the first identifier is either the name of a module or a variable of the module type; the second is the
name of a type mentioned in the module declaration.

4.2.9. Function reference types

A function reference type represents a reference to a function of a given type. It is written as

ref function-type

Function types are discussed in §4.3 below.

4.2.10. Named types

Finally, data types may be named, using a type declaration; this is discussed in §6.4 below.

type-name:
identifier

4.3. Function types

A function type characterizes the arguments and return value of a function. The syntax is

­ 9 ­

function-type:
fn function-arg-ret

function-arg-ret:
(formal-arg-listopt) raisesopt

(formal-arg-listopt) : data-type raisesopt

formal-arg-list:
formal-arg
formal-arg-list , formal-arg

formal-arg:
nil-or-ID-list : type
nil-or-ID : self ref opt identifier
nil-or-ID : self identifier
*

nil-or-ID-list:
nil-or-ID
nil-or-ID-list , nil-or-ID

nil-or-ID:
identifier
nil

raises:
raises (nil-or-ID-list)
raises nil-or-ID

That is, the denotation of a function type has the keywordfn 1 followed by a comma­separated list of
its arguments enclosed in parentheses, and perhaps followed by the type the function returns.
Absence of a return value means that the function returns no value: it is a procedure. The names
and types of arguments are specified. However, the name of an argument may be replaced by
nil ; in this case it is nameless. For example,

fn (nil: int, nil: int): int

fn (radius: int, angle: int): int

fn (radius, angle: int): int

all denote exactly the same type, namely a function of two integers that returns an integer. As another
example,

fn (nil: string)

is the type of a function that takes a string argument and returns no value.

The self keyword has a specialized use within adt declarations. It may be used only for the
first argument of a function declared within an adt ; its meaning is discussed in §6.3 below.

The star character * may be given as the last argument in a function type. It declares that the
function is variadic; during a call, actual arguments at its position and following are passed in a
manner unspecified by the language. For example, the type of the print function of the Sys
module is

fn (s: string, *): int

This means that the first argument ofprint 1 is a string and that other arguments may be given
when the function is called. The Limbo language itself has no way of accessing these arguments;

­ 10 ­

the notation is an artifice for describing facilities built into the runtime system, such as the Sys
module.

The type of a function includes user­defined exceptions that it raises, which must be listed in a
corresponding raises clause.

5. Limbo programs

Limbo source programs that implement modules are stored in files, conventionally named
with the suffix .b . Each such file begins with a single implement directive naming the type of
the module being implemented, followed by a sequence of declarations. Other files, convention­
ally named with the suffix .m , contain declarations for things obtainable from other modules.
These files are incorporated by an include declaration in the implementation modules that need
them. At the top level, a program consists of a sequence of declarations. The syntax is

program:
implement identifier-list ; top-declaration-sequence

top-declaration-sequence:
top-declaration
top-declaration-sequence top-declaration

top-declaration:
declaration
identifier-list := expression;
identifier-list = expression;
(identifier-list) := expression;
module-declaration
function-definition
adt-declaration

The implement 1 declaration at the start identifies the type of the module that is being imple­
mented. The rest of the program consists of a sequence of various kinds of declarations and defi­
nitions that announce the names of data objects, types, and functions, and also create and initial­
ize them. It must include a module declaration for the module being implemented and the
objects it announces, and may also include declarations for the functions, data objects, types, and
constants used privately within the module as well as declarations for modules used by it.

Declarations are used both at the top level (outside of functions) and also inside functions and
module declarations. Some styles of declaration are allowed only in certain of these places, but
all will be discussed together.

Most implementation modules provide an implementation for one type of module. Several
module types may be listed, however, in the implement declaration, when the implementation
module implements them all. When the same name appears in more than one such module type,
it must have the same type.

6. Declarations

Declarations take several forms:

­ 11 ­

declaration:
identifier-list : type ;
identifier-list : type = expression;
identifier-list : con expression;
identifier-list : import identifier ;
identifier-list : type type ;
identifier-list : exception tuple-typeopt

include string-constant ;

identifier-list:
identifier
identifier-list , identifier

expression-list:
expression
expression-list, expression

6.1. Data declarations

These forms constitute the basic way to declare and initialize data:

identifier-list : type ;
identifier-list : type = expression;

A comma-separated sequence of identifiers is followed by a colon and then the name of a type. Each iden-
tifier is declared as having that type and denotes a particular object for rest of its scope (see §11 below). If
the declaration contains=1 and an expression, the type must be a data type, and all the objects are
initialized from the value of the expression. In a declaration at the top level (outside of a func­
tion), the expression must be constant (see §8.5) or an array initialized with constant expressions;
the bound of any array must be a constant expression. Lists and ref adt types may not be ini­
tialized at the top level. If an object is not explicitly initialized, then it is always set to nil if it has
a reference type; if it has arithmetic type, then it is set to 0 at the top level and is undefined if it
occurs within a function.

For example,

i, j: int = 1;

r, s: real = 1.0;

declaresi 1 and j as integers, r and s as real. It sets i and j to 1, and r and s to 1.0.

Another kind of declaration is a shorthand. In either of

identifier := expression;
(identifier-list) := expression;

identifiers on the left are declared using the type of the expression, and are initialized with the value of the
expression. In the second case, the expression must be a tuple or anadt 1, and the types and values
attributed to the identifiers in the list are taken from the members of the tuple, or the data mem­
bers of the adt respectively. For example,

x: int = 1;

and

x := 1;

are the same. Similarly,

(p, q) := (1, 2.1);

­ 12 ­

declares the identifiers on the left asint 1 and real and initializes them to 1 and 2.1 respectively.
Declarations with := can also be expressions, and are discussed again in §8.4.4 below.

6.2. Constant declarations

The con declaration

identifier-list : con expression;

declares a name (or names) for constants. Theexpression1 must be constant (see §8.5). After the dec­
laration, each identifier in the list may be used anywhere a constant of the appropriate type is
needed; the type is taken from the type of the constant. For example, after

Seven: con 3+4;

the nameSeven 1 is exactly the same as the constant 7.

The identifier iota has a special meaning in the expression in a con declaration. It is equiva­
lent to the integer constant 0 when evaluating the expression for the first (leftmost) identifier
declared, 1 for the second, and so on numerically. For example, the declaration

M0, M1, M2, M3, M4: con (1<<iota);

declares several constantsM01 through M4with the values 1, 2, 4, 8, 16 respectively.

The identifier iota is not reserved except inside the expression of the con declaration.

6.3. adt declarations

An adt or abstract data type contains data objects and functions that operate on them. The
syntax is

adt-declaration:
identifier : adt { adt-member-listopt } ;

adt-member-list:
adt-member
adt-member-list adt-member

adt-member:
identifier-list : cyclic opt data-type ;
identifier-list : con expression;
identifier-list : function-type ;
pick { pick-member-list}

After an adt­declaration1, the identifier becomes the name of the type of that adt . For example,
after

Point: adt {

x, y: int;

add: fn (p: Point, q: Point): Point;

eq: fn (p: Point, q: Point): int;

};

the namePoint 1 is a type name for an adt of two integers and two functions; the fragment

r, s: Point;

xcoord: int;

...

xcoord = s.x;

r = r.add(r, s);

­ 13 ­

makes sense. The first assignment selects one of the data members ofs1; the second calls one of the
function members of r .

As this example indicates, adt members are accessed by mentioning an object with the adt
type, a dot, and then the name of the member; the details will be discussed in §8.13 below. A spe­
cial syntactic indulgence is available for functions declared within an adt : frequently such a func­
tion receives as an argument the same object used to access it (that is, the object before the dot).
In the example just above, r was both the object being operated on and the first argument to the
add function. If the first formal argument of a function declared in an adt is marked with the
self keyword, then in any calls to the function, the adt object is implicitly passed to the func­
tion, and is not mentioned explicitly in the actual argument list at the call site. For example, in

Rect: adt {

min, max: Point;

contains: fn(r: self Rect, p: Point): int;

};

r1: Rect;

p1: Point;

...

if (r1.contains(p1)) ...

because the first argument of thecontains 1 function is declared with self , the subsequent call to
it automatically passes r1 as its first argument. The contains function itself is defined else­
where with this first argument explicit. (This mechanism is analogous to the this construct in
C++ and other languages, but puts the special­casing at the declaration site and makes it explicit.)

If self is specified in the declaration of a function, it must also be specified in the definition as
well. For example, contains would be defined

Rect.contains(r: self Rect, p: Point)

{

. . .

}

The adt type in Limbo does not provide control over the visibility of its individual members; if
any are accessible, all are.

Constant adt members follow the same rules as ordinary constants (§6.2).

The cyclic modifier will be discussed in §11.1.

6.3.1. pick adts

An adt which contains a pick member is known as a pick adt. A pick adt is Limbo’s version
of a discriminated union . An adt can only contain one pick member and it must be the last com­
ponent of the adt . Each identifier enumerated in the pick­tag­list names a variant type of the
pick adt . The syntax is

pick-member-list:
pick-tag-list =>
pick-member-list pick-tag-list=>
pick-member-list identifier-list: cyclic opt data-type ;

pick-tag-list:
identifier
pick-tag-list or identifier

The pick­member­list contains a set of data members for each pick­tag­list. These data members
are specific to those variants of the pick adt enumerated in the pick­tag­list. The adt data mem­
bers found outside of the pick are common to all variants of the adt . A pick adt can only be

­ 14 ­

used as a ref adt and can only be initialized from a value of one of its variants. For example, if
Constant is a pick adt and Constant.Real is one of its variant types then

c : ref Constant = ref Constant.Real("pi", 3.1);

will declarec1 to have type ref Constant and initialize it with a value of the variant type ref
Constant.Real .

6.4. Type declarations

The type declaration

identifier-list : type data-type ;

introduces the identifiers as synonyms for the given type. Type declarations are transparent; that is, an
object declared with the newly-named type has the same type as the one it abbreviates.

6.5. Module declarations

A module declaration collects and packages declarations of adt , functions, constants and sim­
ple types, and creates an interface with a name that serves to identify the type of the module. The
syntax is

module-declaration:
identifier : module { mod-member-listopt } ;

mod-member-list:
mod-member
mod-member-list mod-member

mod-member:
identifier-list : function-type ;
identifier-list : data-type ;
adt-declaration ;
identifier-list : con expression;
identifier-list : type type;

After a module declaration, the namedidentifier1 becomes the name of the type of that module. For
example, the declaration

Linear: module {

setflags: fn (flag: int);

TRUNCATE: con 1;

Vector: adt {

v: array of real;

add: fn (v1: self Vector, v2: Vector): Vector;

cross: fn (v1: self Vector, v2: Vector): Vector;

dot: fn (v1: self Vector, v2: Vector);

make: fn (a: array of real): Vector;

};

Matrix: adt {

m: array of array of real;

add: fn (m1: self Matrix, m2: Matrix): Matrix;

mul: fn (m1: self Matrix, m2: Matrix): Matrix;

make: fn (a: array of array of real): Matrix;

};

};

­ 15 ­

is a module declaration for a linear algebra package that implements twoadt 1, namely Vector and
Matrix , a constant, and a function setflags . The name Linear is the type name for the mod­
ule, and it may be used to declare an object referring to an instance of the module:

linearmodule: Linear;

Before the module can be used, it must be loaded, for example in the style:

linearmodule = load Linear "/usr/dmr/limbo/linear.dis";

if (linearmodule == nil) {

sys->print("Can’t load Linear\n");

exit;

}

The load 1 operator is discussed more fully in §8.4.5 below.

To initialize data declared as part of a module declaration, an assignment expression may be
used at the top level. For example:

implement testmod;

testmod: module {

num: int;

};

. . .

num = 5;

The right side of the assignment must be a constant expression (§8.5).

6.6. Declarations with import

These declarations take the form

identifier-list : import identifier ;

Identifiers for entities declared within a module declaration are normally meaningful only in a context that
identifies the module. Theimport 1 declaration lifts the names of specified members of a module
directly into the current scope. The use of import will be discussed more fully in §8.1.4 below,
after the syntax for expressions involving modules has been presented.

6.7. Exception declarations

Exceptions represent run­time errors not data objects or values. Exception declarations have
the form:

identifier-list : exception tuple-typeopt

Each identifier gives a compile-time name to a distinct user-defined run-time error, signaled at run-time by
a raise 1 statement that quotes that identifier, as described below. An exception optionally
includes a tuple of data values that qualifies the exception; the types of those values are provided
by the tuple type in this declaration.

6.8. Declarations with include

The string following the include keyword names a file, which is inserted into the program’s
text at that point. The included text is treated like text literally present. Conventionally, included
files declare module interfaces and are named with the suffix .m . The directories to be searched
for included files may be specified to the Limbo compiler command. Include files may be nested.

7. Function definitions

All executable code is supplied as part of a function definition. The syntax is

­ 16 ­

function-definition:
function-name-part function-arg-ret{ statements}

function-name-part:
identifier
function-name-part. identifier

The syntax of the statements in a function will be discussed in §9 below. As a brief example,

add_one(a: int): int

{

return a+1;

}

is a simple function that might be part of the top level of a module.

Functions that are declared within an adt use the qualified form of definition:

Point: adt {

x, y: int;

add: fn (p: Point, q: Point): Point;

eq: fn (p: Point, q: Point): int;

}

. . .

Point.add(p: Point, q: Point): Point

{

return Point(p.x+q.x, p.y+q.y);

}

Because anadt 1 may contain an adt , more than one qualification is possible.

8. Expressions

Expressions in Limbo resemble those of C, although some of the operators are different. The
most salient difference between Limbo’s expression semantics and those of C is that Limbo has
no automatic coercions between types; in Limbo every type conversion is explicit.

8.1. Terms

The basic elements of expressions are terms:

term:
identifier
constant
real-constant
string-constant
nil
(expression-list)
term . identifier
term -> term
term (expression-listopt)
term [expression]
term [expression: expression]
term [expression:]
term ++
term --

The operators on terms all associate to the left, and their order of precedence, with tightest listed first, is as
follows:

­ 17 ­

.

->

() [] ++ --

8.1.1. Simple terms

The first five kinds of term are constants and identifiers. Constants have a type indicated by
their syntax. An identifier used in an expression is often a previously declared data object with a
particular data type; when used as a term in an expression it denotes the value stored in the
object, and the term has the declared object’s type. Sometimes, as discussed below, identifiers
used in expressions are type names, function names, or module identifiers.

8.1.2. Parenthesized terms

A comma­separated list of expressions enclosed in parentheses is a term. If a single expression
is present in the list, the type and value are those of the expression; the parentheses affect only
the binding of operators in the expression of which the term is a part. If there is more than one
expression in the list, the value is a tuple. The member types and values are taken from those of
the expressions.

8.1.3. Selection

A term of the form

term . identifier

denotes selection of a member of anadt 1 or one element from a tuple.

In the first case, the term must be a type name or yield an object; its type must be adt or ref
adt ; the identifier must be a member of the adt . The result denotes the named member (either a
data object or a function).

In the second case, the term must yield a value of a tuple type, and the identifier must have the
form t n where n is a decimal number giving the index (starting from 0) of an element of the
tuple. The result is the value of that element.

8.1.4. Module qualification

A term of the form

term -> term

denotes module qualification. The first term identifies a module: either it is a module type name, or it is an
expression of module type. The second term is a constant name, type, or function specified within that
module’s declaration. Either the module type name or an object of the module’s type suffices to qualify
constants and types; functions directly exported by the module or contained within itsadt 1 must be qual­
ified by an object of the module’s type, initialized with load .

An example using an abridged version of an example above: given

Linear: module {

setflags: fn(flag: int);

TRUNCATE: con 1;

Vector: adt {

make: fn(v: array of real): Vector;

v: array of real;

};

};

one might say

­ 18 ­

lin := load Linear "/dis/linear.dis";

a: array of real;

v1: lin->Vector;

v2: Linear->Vector;

lin->setflags(Linear->TRUNCATE);

v1 = lin->(Linear->Vector).make(a);

v1 = lin->v1.make(a);

v1 = lin->v1.add(v1);

v1.v = nil;

Here, the declarations forv1 1 and v2 are equivalent; either a module type name (here, Linear) or
a handle (here, lin) suffices to identify the module. In the call to setflags , a handle is
required for the call itself; the type name is sufficient for the constant.

When calling a function associated with an adt of another module, it is necessary to identify
both the module and the adt as well as the function. The two calls to the make function illustrate
two ways of doing this. In the first,

v1 = lin->(Linear->Vector).make(a);

the module handlelin 1 is specified first, then the type name of the Vector adt within it, and
then the function. In the second call

v1 = lin->v1.make(a);

instead of using a type name to specify theadt 1, an instance of an object of the appropriate type is
used instead. In the first example, the parentheses are required because the qualification opera­
tors associate to the left.

v1 = lin->Vector.make(a); # Wrong

v1 = lin->Linear->Vector.make(a); # Wrong

The first is wrong because the samelin 1 can’t serve as a qualifier for both the type and the call; the
second is wrong because lin->Linear is meaningless.

Using import makes the code less verbose:

lin := load Linear "/usr/dmr/limbo/linear.dis";

Vector, TRUNCATE, setflags: import lin;

a: array of real;

v1: Vector;

v2: Vector;

setflags(TRUNCATE);

v1 = Vector.make(a);

v1 = v1.make(a);

v1 = v1.add(v1);

v1.v = nil;

8.1.5. Function calls

The interpretation of an expression in the form

term (expression-listopt)

depends on the declaration of the term. If it is the (perhaps qualified) name of anadt 1, then the expres­
sion is a cast; this is discussed in §8.2.11 below. If the term is either the (perhaps qualified) name
of a function or a value of a function reference type, and the expression means a function call; this
is discussed here.

­ 19 ­

A plain identifier as the term can name a function defined in the current module or imported
into it. A term qualified by using the selection operator . specifies a function member of an adt ;
a term using -> specifies a function defined in another module.

The term , including a plain identifier denoting a variable of function reference type, can also
yield a function reference value. The value specifies both a function and its module, established
when the value was created, and cannot be qualified by the ­> specifier.

Function calls in Limbo create a copy of each argument of value type, and the execution of a
function cannot affect the value of the corresponding actual argument. For arguments of refer­
ence type, execution of the function may affect the value of the object to which the reference
refers, although it cannot change the argument itself. The actual arguments to a function are
evaluated in an unspecified order, although any side effects caused by argument evaluation
occur before the function is called.

Function calls may be directly or indirectly recursive; objects declared within each function are
distinct from those in their dynamic predecessors.

Functions (§4.3, §7) may either return a value of a specified type, or return no value. If a func­
tion returns a value, it has the specified type. A call to a function that returns no value may
appear only as the sole expression in a statement (§9.1).

A function name is converted to a reference to that function when it appears in a context
requiring a function reference type, including assignment to a variable, as an actual parameter, or
the return value of a function. The resulting reference value includes the appropriate module
value for the function name, following the rules given above for implicit and explicit qualifiers,
and imports. For example, the following program fragment defines a table of commands:

Cmd: adt {

c: int;

f: ref fn(a: array of string): int;

};

mkcmds(): array of Cmd

{

return array[] of {

(’.’, editdot),

(’a’, editadd),

(’d’, editdel),

(’?’, edithelp),

(’w’, editwrite),

(’q’, editquit),

};

}

editdot(a: array of string): int

{

...

}

...

editquit(a: array of string): int

{

...

}

which might be used as follows:

­ 20 ­

cmd := mkcmds();

...

for(i := 0; i < len cmd; i++)

if(cmd[i].c == c){

cmd[i].f(args);

return;

}

error("unknown command");

8.1.6. Subscripting and slicing

In a term of the form

term [expression]

the first term must be an array or a string, and the bracketed expression must haveint 1 type. The whole
term designates a member of the array or string, indexed by the bracketed expression; the index
origin is 0. For an array, the type of the whole term is the type from which the array is con­
structed; for a string, the type is an int whose value is the Unicode character at that position in
the string.

It is erroneous to refer to a nonexisting part of an array or string. (A single exception to this
rule, discussed in §8.4.1 below, allows extending a string by assigning a character at its end.)

In a term of the form

term [expression: expression]

the first term must be an array or a string, and the whole term denotes a slice of it. The first expression is
the lower bound, and the second is the upper. Ife11 is the first expression and e2 is the second, then
in a[e1:e2] it must be the case that 0<=e1, e1<=e2, e2<=len a , where len gives the num­
ber of elements in the array or string. When the term is an array, the value is an array of the same
type beginning at the indicated lower bound and extending to the element just before the upper
bound. When the term is a string, the value is similarly the substring whose first character is
indexed by the lower bound and whose last character lies just before the upper bound.

Thus, for both arrays and strings, the number of elements in a[e1:e2] is equal to e2-e1 .

A slice of the form a[e:] means a[e:len a].

When a string slice is assigned to another string or passed as an argument, a copy of its value is
made.

A slice of an array produces a reference to the designated subarray; a change to an element of
either the original array or the slice is reflected in the other.

In general, slice expressions cannot be the subject of assignments. However, as a special case,
an array slice expression of the form a[e1:] may be assigned to. This is discussed in §8.4.1.

The following example shows how slices can be used to accomplish what would need to be
done with pointer arithmetic in C:

­ 21 ­

fd := sys->open(...);

want := 1024;

buf := array[want] of byte;

b := buf[0:];

while (want>0) {

got := sys->read(fd, b, want);

if (got<=0)

break;

b = b[got:];

want -= got;

}

Here the arraybuf 1 is filled by successive calls to sys->read that may supply fewer bytes than
requested; each call stores up to want bytes starting at b[0] , and returns the number of bytes
stored. The invariant is that the slice b always refers to the part of the array still to be stored into.

8.1.7. Postfix increment and decrement

A term of the form

term ++

is called apost­increment1. The term must be an lvalue (see §8.4 below) and must have an arith­
metic type. The type and value of the whole term is that of the incremented term. After the
value is taken, 1 of the appropriate type is added to the lvalue. The result is undefined if the
same object is changed more than once in the same expression.

The term

term --

behaves analogously to the increment case except that 1 is subtracted from the lvalue.

8.2. Monadic expressions

Monadic expressions are expressions with monadic operators, together with a few more spe­
cialized notations:

monadic-expression:
term
monadic-operator monadic-expression
array [expression] of data-type
array [expressionopt] of { init-list }
list of { expression-list}
chan of data-type
chan [expression] of data-type
data-type monadic-expression

monadic-operator: one of
+ - ! ~ ref * ++ -- <- hd tl len

8.2.1. Monadic additive operators

The - operator produces the negative of its operand, which must have an arithmetic type. The
type of the result is the same as the type of its operand.

The + operator has no effect; it is supplied only for symmetry. However, its argument must
have an arithmetic type and the type of the result is the same.

­ 22 ­

8.2.2. Logical negation

The ! operator yields the int value 1 if its operand has the value 0, and yields 0 otherwise.
The operand must have type int .

8.2.3. One’s complement

The ~ operator yields the 1’s complement of its operand, which must have type int or byte .
The type of the result is the same as that of its operand.

8.2.4. Reference and indirection operators

If e is an expression of an adt type, then ref e is an expression of ref adt type whose value
refers to (points to) an anonymous object with value e . The ref operator differs from the unary &
operator of C; it makes a new object and returns a reference to it, rather than generating a refer­
ence to an existing object.

If e is an expression of type ref adt , then * e is the value of the adt itself. The value of e must
not be nil .

For example, in

Point: adt { ... };

p: Point;

pp: ref Point;

p = Point(1, 2);

pp = ref p; # pp is a new Point; *pp has value (1, 2)

p = Point(3, 4); # This makes *pp differ from p

*pp = Point(4, 5); # This does not affect p

the expression*pp 1 at first refers to a copy of the value stored in p, so *pp == p is true; however,
when p is changed later, *pp does not change.

8.2.5. Prefix increment and decrement

A monadic expression of the form

++ monadic-expression

is called apre­increment1. The monadic expression must be an lvalue (see §8.4 below) and must
have an arithmetic type. Before the value is taken, 1 of the appropriate type is added to the
lvalue. The type and value of the whole expression is that of the now incremented term. The
result is undefined if the same object is changed more than once in the same expression.

The term

-- monadic-expression

behaves analogously to the increment case except that 1 is subtracted from the lvalue.

8.2.6. Head and tail

The operand of the hd operator must be a non­empty list. The value is the first member of the
list and has that member’s type.

The operand of the tl operator must be a non­empty list. The value is the tail of the list, that
is, the part of the list after its first member. The tail of a list with one member is nil .

8.2.7. Length

The operand of the len operator is a string, an array, or a list. The value is an int giving the
number of elements currently in the item.

­ 23 ­

8.2.8. Tagof

The operand of the tagof operator is a monadic expression of type ref adt that refers to a
pick adt . or the type name of a pick adt or one of its variants. The value is an int giving a
unique value for each of the variants and for the pick adt type itself.

8.2.9. Channel communication

The operand of the communication operator <- has type chan of sometype . The value of the
expression is the first unread object previously sent over that channel, and has the type associ­
ated with the channel. If the channel is empty, the program delays until something is sent.

As a special case, the operand of <- may have type array of chan of sometype . In this case,
all of the channels in the array are tested; one is fairly selected from those that have data. The
expression yields a tuple of type (int, sometype) ; its first member gives the index of the chan­
nel from which data was read, and its second member is the value read from the channel. If no
member of the array has data ready, the expression delays.

Communication channels are treated more fully in §9.8 and §9.13 below with the discussion of
the alt and spawn statements.

8.2.10. Creation of arrays

In the expressions

array [expression] of data-type
array [expressionopt] of { init-list , opt }

the value is a new array of the specified type. In both forms, theexpression1 must be of type int , and it
supplies the size of the array. In the first form, the type is given, and the values in the array are
initialized as appropriate to the underlying type. In the second form, a comma­separated list of
values to initialize the array is given, optionally followed by a trailing comma. The type of the
array is taken from the types of the initializers, which must all be the same. The list of initializers
has the syntax

init-list:
element
init-list , element

element:
expression
expression=> expression
* => expression

In an init­list1 of plain expressions (without =>), the members of the array are successively initial­
ized with the corresponding elements of the init­list. An element of the form e1=>e2 initializes
the member of the array at subscript e1 with the expression e2 . After such an element has been
given, subsequent simple elements (without =>) begin initializing at position e1+1 and so on.
Each of the first expressions must be of type int and must evaluate to a constant (§8.5).

If an element of the form * =>e2 is present, all members of the array not otherwise initialized
are set to the value e2 . The expression e2 is evaluated for each subscript position, but in an
undefined order. For example,

arr := array[3] of { * => array[3] of { * => 1 } };

yields a 2-dimensional array (actually an array of arrays) filled with11’s.

If the expression giving the size of the array is omitted, its size is taken from the largest sub­
script of a member explicitly initialized. It is erroneous to initialize a member twice.

­ 24 ­

8.2.11. Creation of lists

The value of an expression

list of { expression-list}

is a list consisting of the expressions given. The types of the expressions must be identical, and this type is
the underlying type of the list. The first expression is the head of the list, and the remaining expressions are
a list constituting its tail. Where a list is expected,nil 1 specifies an empty list.

8.2.12. Creation of channels

The value of

chan of data-type

is an initialized channel of the specified type. Just a declaration of a channel leaves it initialized only to
nil 1; before it can be used it must be created. For example,

ch: chan of int; # just declares, sets ch to nil

. . .

ch = chan of int; # creates the channel and assigns it

Such a channel is unbuffered. The value of

chan [expression] of data-type

is an initialized channel of the specified type. Theexpression1 must be of type int , and sets the size of
the channel’s buffer. If the size is zero, the channel is unbuffered, as for the first form.

8.2.13. Casts

An expression of the form

data-type monadic-expression

in which a type name is followed by an expression is called acast1, and converts the monadic expres­
sion to the named type. Only certain specialized forms are provided for.

8.2.13.1. Arithmetic casts

In arithmetic casts, the named type must be one of byte , int , big , or real , and the monadic­
expression must have arithmetic type. For example,

byte 10

is an expression ofbyte 1 type and value 10. When real values are converted to integral ones, they
are rounded to the nearest integer, and away from 0 if there is a tie. The effect of overflow dur­
ing conversion is undefined.

8.2.13.2. Casts to strings

Here the named data type is string . In a first form, the monadic expression has arithmetic
type (byte , int , big , or real) and the value is a string containing the decimal representation of
the value, which may be either positive or negative. A real operand is converted as if by format
%g, and if the result is converted back to real , the original value will be recovered exactly.

In a second form, the monadic expression has type array of byte . The value is a new string
containing the Unicode characters obtained by interpreting the bytes in the array as a UTF­8 rep­
resentation of that string. (UTF­8 is a representation of 16­bit Unicode characters as one, two, or
three bytes.) The result of the conversion is undefined if the byte array ends within a multi­byte
UTF­8 sequence.

­ 25 ­

8.2.13.3. Casts from strings

In a first form, the monadic expression is a string, and the named type is an arithmetic type.
The value is obtained by converting the string to that type. Initial white space is ignored; after a
possible sign, conversion ceases at the first character not part of a number.

In a second form, the named type is array of byte and the monadic­expression is a string.
The value is a new array of bytes containing the UTF­8 representation of the Unicode characters
in the string. For example,

s := "Ångström";

a := array of byte s;

s = string a;

takes the strings1 apart into bytes in the second line, and puts it back in the third. The length of s
is 8, because it contains that many characters; the length of a is larger, because some of its charac­
ters require more than one byte in the UTF­8 representation.

8.2.13.4. Casts to adt and ref adt

Here the named type is that of an adt or ref adt , and the monadic expression is a comma­
separated list of expressions within parentheses. The value of the expression is an instance of an
adt of the named type whose data members are initialized with the members of the list, or
whose single data member is initialized with the parenthesized expression. In case the type is
ref adt , the value is a reference to the new instance of the adt .

The expressions in the list, read in order, correspond with the data members of the adt read in
order; their types and number must agree. Placement of any function members of the adt is
ignored. For example,

Point: adt {

x: int;

eq: fn (p: Point): int;

y: int;

};

. . .

p: Point;

p = Point(1, 2);

puts inp1 a Point whose x value is 1 and whose y value is 2. The declaration and assignment
could also be written

p := Point(1, 2);

8.3. Binary expressions

Binary expressions are either monadic expressions, or have two operands and an infix opera­
tor; the syntax is

binary-expression:
monadic-expression
binary-expression binary-operator binary-expression

binary-operator: one of
** * / % + - << >> < > <= >= == != & ^ | :: && ||

All these binary operators are left-associative except for** 1 and :: , which associate to the right.
Their precedence is as listed here, with tightest first:

­ 26 ­

**

* / %

+ -

<< >>

< > <= >=

== !=

&

^

|

::

&&

||

8.3.1. Exponentiation

The ** operator accomplishes exponentiation. The type of the left operand must be int , big
or real . The type of the right operand must be int . The result has the type of the left operand.
The operator is right associative, thus

3**4*2 = (3**4)*2 = 81*2 = 162

-3**4 = (-3)**4 = 81

2**3**2 = 2**(3**2) = 2**9 = 512

8.3.2. Multiplicative operators

The * , / , and %operators respectively accomplish multiplication, division, and remainder. The
operands must be of identical arithmetic type, and the result has that same type. The remainder
operator does not apply to type real . If overflow or division by 0 occurs, the result is unde­
fined. The absolute value of a%b is less than the absolute value of b; (a/b)*b + a%b is always
equal to a; and a%bis non­negative if a and b are.

8.3.3. Additive operators

The + and - operators respectively accomplish addition and subtraction of arithmetic operands
of identical type; the result has the same type. The behavior on overflow or underflow is unde­
fined. The + operator may also be applied to strings; the result is a string that is the concatena­
tion of the operands.

8.3.4. Shift operators

The shift operators are << and >>. The left operand may be big , int , or byte ; the right
operand is int . The type of the value is the same as its left operand. The value of the right
operand must be non­negative and smaller than the number of bits in the left operand. For the
left­shift operator <<, the fill bits are 0; for the right­shift operator >>, the fill bits are a copy of the
sign for the int case, and 0 for the byte case.

8.3.5. Relational operators

The relational operators are < (less than), > (greater than), <= (less than or equal), >= (greater
than or equal), == (equal to), != (not equal to). The first four operators, which generate order­
ings, apply only to arithmetic types and to strings; the types of their operands must be identical,
except that a string may be compared to nil . Comparison on strings is lexicographic over the
Unicode character set.

The equality operators == and != accept operands of arithmetic, string, and reference types. In
general, the operands must have identical type, but reference types and strings may be compared
for identity with nil . Equality for reference types occurs when the operands refer to the same

­ 27 ­

object, or when both are nil . An uninitialized string, or one set to nil , is identical to the empty
string denoted "" for all the relational operators.

The value of any comparison is the int value 1 if the stated relation is true, 0 if it is false.

8.3.6. Bitwise logical operators

The logical operators & (and), ^ (exclusive or) and | (inclusive or) require operands of the same
type, which must be byte , int , or big . The result has the same type and its value is obtained by
applying the operation bitwise.

8.3.7. List concatenation

The concatenation operator :: takes a object of any data type as its left operand and a list as its
right operand. The list’s underlying type must be the same as the type of the left operand. The
result is a new list with the left operand tacked onto the front:

hd (a :: l)

is the same asa1.

8.3.8. Logical operators

The logical and operator && first evaluates its left operand. If the result is zero, then the value
of the whole expression is the int value 0. Otherwise the right operand is evaluated; if the result
is zero, the value of the whole expression is again 0; otherwise it is 1. The operands must have
the same arithmetic type.

The logical or operator || first evaluates its left operand. If the result is non­zero, then the
value of the whole expression is the int value 1. Otherwise the right operand is evaluated; if the
result is non­zero, the value of the whole expression is again 1; otherwise it is 0. The operands
must have the same arithmetic type.

8.4. General Expressions

The remaining syntax for expressions is

expression:
binary-expression
lvalue-expression assignment-operator expression
(lvalue-expression-list) = expression
send-expression
declare-expression
load-expression

assignment-operator: one of
= &= |= ^= <<= >>= += -= *= /= %=

The left operand of an assignment can take only certain forms, called lvalues.

­ 28 ­

lvalue-expression:
identifier
nil
term [expression]
term [expression:]
term . identifier
(lvalue-expression-list)
* monadic-expression

lvalue-expression-list:
lvalue
lvalue-expression-list, lvalue

8.4.1. Simple assignments with =

In general, the types of the left and right operands must be the same; this type must be a data
type. The value of an assignment is its new left operand. All the assignment operators associate
right­to­left.

In the ordinary assignment with =, the value of the right side is assigned to the object on the
left. For simple assignment only, the left operand may be a parenthesized list of lvalues and the
right operand either a tuple or an adt whose data members correspond in number and type to
the lvalues in the list. The members of the tuple, or the data members of the adt , are assigned in
sequence to lvalues in the list. For example,

p: Point;

x, y: int;

(x, y) = p;

splits out the coordinates of the point intox1 and y . These rules apply recursively, so that if one of
the components of the left side is a parenthesized list of lvalues, it is assigned from a correspond­
ing adt or tuple on the right.

If the left operand of a simple assignment is an adt and the right side is a tuple, then the
assignment assigns the members of the tuple to the adt data members; these must correspond in
number and type with the members of the tuple.

The constant nil may be assigned to an lvalue of any reference type. This lvalue will compare
equal to nil until it is subsequently reassigned. Such an assignment also triggers the removal of
the object referred to unless other references to it remain.

The left operand of an assignment may be the constant nil to indicate that a value is dis­
carded. This applies in particular to any of the lvalues in a tuple appearing on the left; to extend
the examples above,

(x, nil) = p;

assigns thex1 member of the Point p to the variable x .

A special consideration applies to strings. If an int containing a Unicode character is assigned
to a subscripted string, the subscript is normally required to lie within the string. As a special
case, the subscript’s value may be equal to the length of the string (that is, just beyond its end); in
this case, the character is appended to the string, and the string’s length increases by 1.

A final special case applies to array slices in the form e1[e2:] . Such expressions may lie on
the left of =. The right side must be an array of the same type as e1 , and its length must be less
than or equal to (len e1)-e2. In this case, the elements in the array on the right replace the
elements of e1 starting at position e2 . The length of the array is unchanged.

­ 29 ­

8.4.2. Compound assignments

A compound assignment with op= is interpreted in terms of the plain assignment;

e1 op= e2;

is equivalent to

e1 = (e1) op (e2);

except thate11 is evaluated only once.

8.4.3. Send expressions

A send­expression takes the form

send-expression:
lvalue-expression<- = expression

In the expression

e1 <- = e2

the lvaluee11 must have type chan of type , and e2 must be of that type. The value of e2 is sent
over the channel. If no task is executing a channel receive operation on the specified channel, and
the channel is unbuffered or its buffer is full, the sender blocks. Task synchronization is dis­
cussed in §9.8 and §9.13 below.

8.4.4. Declare­expressions

A declare­expression is an assignment that also declares identifiers on its left:

declare-expression:
lvalue-expression:= expression

Each of the constituent terms in thelvalue­expression1 must be an identifier or nil . A plain identifier
on the left is declared as having the type of the expression, and it is initialized with the
expression’s value. When a parenthesized list of identifiers is given, the expression must be a
tuple or an adt , and the individual identifiers in the list are declared and initialized with the
members of the tuple, or the data members of the adt . As with ordinary assignments, the key­
word nil may stand for an identifier whose declaration and assignment are skipped.

The value and type of a declare­expression are the same as those of the expression.

8.4.5. Load expressions

A load­expression has the form

load-expression:
load identifier expression

The identifier is the identifier of a module, that is, the type name declared in amodule 1 declaration. The
expression following load has type string and names a file containing the compiled form of
the module. The load expression yields a handle for referring to the functions provided by a
module and its adt .

Execution of load brings the file containing the module into local memory and dynamically
type­checks its interface: the run­time system ascertains that the declarations exported by the
module are compatible with the module declaration visible in the scope of the load operator (see
§11.2). In the scope of a module declaration, the types and constants exported by the module
may be referred to without a handle, but the functions and data exported by the module (directly
at its top level, or within its adt) may be called only using a valid handle acquired by the load
operator.

­ 30 ­

The value of load is nil if the attempt to load fails, either because the file containing the mod­
ule can not be found, or because the found module does not export the specified interface.

Each evaluation of load creates a separate instance of the specified module; it does not share
data with any other instance.

8.5. Constant expressions

In several places a constant expression is required. Such an expression contains operands that
are identifiers previously declared with con , or int , big , real , or string constants. These
may be connected by any of the following operators:

+ - * / % & | ^

== < > <= >= != << >>

&& ||

~ !

together with arithmetic and string casts, and parentheses for grouping.

8.6. Expression evaluation

Expressions in Limbo are not reordered by the compiler; values are computed in accordance
with the parse of the expression. However there is no guarantee of temporal evaluation order for
expressions with side effects, except in the following circumstances: function arguments are fully
evaluated before the function is called; the logical operators && and || have fully defined order
of evaluation, as explained above. All side effects from an expression in one statement are com­
pleted before the next statement is begun.

In an expression containing a constant subexpression (in the sense of §8.5), the constant subex­
pression is evaluated at compile­time with all exceptions ignored.

Underflow, overflow, and zero­divide conditions during integer arithmetic produce undefined
results.

The real arithmetic of Limbo is all performed in IEEE double precision, although denormal­
ized numbers may not be supported. By default, invalid operations, zero­divide, overflow, and
underflow during real arithmetic are fatal; inexact­result is quiet. The default rounding mode is
round­to­nearest­even. A set of routines in the Math library module permits independent control
of these modes within each thread.

9. Statements

The executable code within a function definition consists of a sequence of statements and decla­
rations. As discussed in the Scope section §11 below, declarations become effective at the place
they appear. Statements are executed in sequence except as discussed below. In particular, the
optional labels on some of the statements are used with break and continue to exit from or re­
execute the labeled statement.

­ 31 ­

statements:
(empty)
statements declaration
statements statement

statement:
expression;
;
{ statements}
if (expression) statement
if (expression) statementelse statement
labelopt while (expressionopt) statement
labelopt do statementwhile (expressionopt) ;
labelopt for (expressionopt ; expressionopt ; expressionopt) statement
labelopt case expression{ qual-statement-sequence}
labelopt alt { qual-statement-sequence}
labelopt pick identifier := expression{ pqual-statement-sequence}
break identifieropt ;
continue identifieropt ;
return expressionopt ;
spawn term (expression-listopt) ;
exit ;
{ statements} exception identifieropt{ qual-statement-sequence}
raise expressionopt ;

label:
identifier :

9.1. Expression statements

Expression statements consist of an expression followed by a semicolon:

expression;

Most often expression statements are assignments, but other expressions that cause effects are often useful,
for example calling a function or sending or receiving on a channel.

9.2. Null statement

The null statement consists of a lone semicolon. It is most useful for supplying an empty body
to a looping statement with internal side effects.

9.3. Blocks

Blocks are statements enclosed in {} characters.

{ statements}

A block starts a new scope. The effect of any declarations within a block disappears at the end of the block.

9.4. Conditional statements

The conditional statement takes two forms:

if (expression) statement
if (expression) statementelse statement

The expression1 is evaluated; it must have type int . If it is non­zero, then the first statement is
executed. In the second form, the second statement is executed if the expression is 0. The state­
ment after else is connected to the nearest else ­less if .

­ 32 ­

9.5. Simple looping statements

The simple looping statements are

labelopt while (expressionopt) statement
labelopt do statementwhile (expressionopt) ;

In both cases the expression must be of typeint 1. In the first form, the expression is first tested
against 0; while it is not equal, the statement is repeatedly executed. In the second form, the state­
ment is executed, and then, while the expression is not 0, the statement is repeatedly executed. If
the expression is missing, it is understood to be non­zero.

9.6. for statement

The for statement has the form

labelopt for (expression-1opt ; expression-2opt ; expression-3opt) statement

It is equivalent to

expression-1;
while (expression-2) {

statement
expression-3;

}

in the absence ofcontinue 1 or break statements. Thus (just as in C), the first expression is an
initialization, the second a test for starting and continuing the loop, and the third a re­
initialization for subsequent travels around the loop.

9.7. case statement

The case statement transfers control to one of several places depending on the value of an
expression:

labelopt case expression{ qual-statement-sequence}

The expression must have typeint 1, big or string . The case statement is followed by sequence
of qualified statements, which are statements labeled by expressions or expression ranges:

qual-statement-sequence:
qual-list =>
qual-statement-sequence qual-list=>
qual-statement-sequence statement
qual-statement-sequence declaration

qual-list:
qualifier
qual-list or qualifier

qualifier:
expression
expressionto expression
*

A qual­statement­sequence1 is a sequence of statements and declarations, each of which is preceded
by one or more qualifiers. Syntactically, the qualifiers are expressions, expression ranges with
to , or * . If the expression mentioned after case has int or big type, all the expressions appear­
ing in the qualifiers must evaluate to integer constants of the same type (§8.5). If the expression
has string type, all the qualifiers must be string constants.

­ 33 ­

The case statement is executed by comparing the expression at its head with the constants in
the qualifiers. The test is for equality in the case of simple constant qualifiers; in range qualifiers,
the test determines whether the expression is greater than or equal to the first constant and less
than or equal to the second.

None of the ranges or constants may overlap. If no qualifier is selected and there is a * quali­
fier, then that qualifier is selected.

Once a qualifier is selected, control passes to the set of statements headed by that qualifier.
When control reaches the end of that set of statements, control passes to the end of the case
statement. If no qualifier is selected, the case statement is skipped.

Each qualifier and the statements following it up to the next qualifier together form a separate
scope, like a block; declarations within this scope disappear at the next qualifier (or at the end of
the statement.)

As an example, this fragment separates small numbers by the initial letter of their spelling:

case i {

1 or 8 =>

sys->print("Begins with a vowel\n)";

0 or 2 to 7 or 9 =>

sys->print("Begins with a consonant\n");

* =>

sys->print("Sorry, didn’t understand\n");

}

9.8. alt statement

The alt statement transfers control to one of several groups of statements depending on the
readiness of communication channels. Its syntax resembles that of case :

labelopt alt { qual-statement-sequence}

However, the qualifiers take a form different from those ofcase 1. In alt , each qualifier must be a * ,
or an expression containing a communication operator <- on a channel; the operator may specify
either sending or receiving. For example,

outchan := chan of string;

inchan := chan of int;

alt {

i := <-inchan =>

sys->print("Received %d\n", i);

outchan <- = "message" =>

sys->print("Sent the message\n");

}

Thealt 1 statement is executed by testing each of the channels mentioned in the qual­list expres­
sions for ability to send or receive, depending on the operator; if none is ready, the program
blocks until at least one is ready. Then a random choice from the ready channels is selected and
control passes to the associated set of statements.

If a qualifier of the form * is present, then the statement does not block; if no channel is ready
the statements associated with * are executed.

If two communication operators are present in the same qualifier expression, only the leftmost
one is tested by alt . If two or more alt statements referring to the same receive (or send) chan­
nel are executed in different threads, the requests are queued; when the channel becomes
unblocked, the thread that executed alt first is activated.

­ 34 ­

As with case , each qualifier and the statements following it up to the next qualifier together
form a separate scope, like a block; declarations within this scope disappear at the next qualifier
(or at the end of the statement.) Thus, in the example above, the scope of i in the arm

i := <-inchan =>

sys->print("Received %d\n", i);

is restricted to these two lines.

As mentioned in the specification of the channel receive operator <- in §8.2.8, that operator can
take an array of channels as an argument. This notation serves as a kind of simplified alt in
which all the channels have the same type and are treated similarly. In this variant, the value of
the communication expression is a tuple containing the index of the channel over which a com­
munication was received and the value received. For example, in

a: array [2] of chan of string;

a[0] = chan of string;

a[1] = chan of string;

. . .

(i, s) := <- a;

s has now has the string from channel a[i]

the<- 1 operator waits until at least one of the members of a is ready, selects one of them at ran­
dom, and returns the index and the transmitted string as a tuple.

During execution of an alt , the expressions in the qualifiers are evaluated in an undefined
order, and in particular subexpressions may be evaluated before the channels are tested for readi­
ness. Therefore qualifying expressions should not invoke side effects, and should avoid subparts
that might delay execution. For example, in the qualifiers

ch <- = getchar() => # Bad idea

ich <- = next++ => # Bad idea

getchar() 1 may be called early in the elaboration of the alt statement; if it delays, the entire
alt may wait. Similarly, the next++ expression may be evaluated before testing the readiness
of ich .

9.9. pick statement

The pick statement transfers control to one of several groups of statements depending upon
the resulting variant type of a pick adt expression. The syntax resembles that of case :

labelopt pick identifier := expression{ pqual-statement-sequence}

The expression must have typeref 1 adt and the adt must be a pick adt . The pick statement is
followed by a sequence of qualified statements, which are statements labeled by the pick variant
names:

­ 35 ­

pqual-statement-sequence:
pqual-list =>
pqual-statement-sequence pqual-list=>
pqual-statement-sequence statement
pqual-statement-sequence declaration

pqual-list:
pqualifier
pqual-list or pqualifier

pqualifier:
identifier
*

A pqual­statement­sequence1 is a sequence of statements and declarations, each of which is pre­
ceded by one or more qualifiers. Syntactically, the qualifiers are identifiers, identifier lists (con­
structed with or), or * . The identifiers must be names of the variant types of the pick adt . The
pick statement is executed by comparing the variant type of the pick adt referenced by the
expression at its head with the variant type names in the qualifiers. The matching qualifier is
selected. None of the variant type names may appear more than once. If no qualifier is selected
and there is a * qualifier, then that qualifier is selected.

Once a qualifier is selected, control passes to the set of statements headed by that qualifier.
When control reaches the end of that set of statements, control passes to the end of the pick
statement. If no qualifier is selected, the pick statement is skipped.

Each qualifier and the statements following it up to the next qualifier together form a separate
scope, like a block; declarations within this scope disappear at the next qualifier (or at the end of
the statement.)

The identifier and expression given in the pick statement are used to bind a new variable to a
pick adt reference expression, and within the statements associated with the selected qualifier
the variable can be used as if it were of the corresponding variant type.

As an example, given a pick adt of the following form:

Constant: adt {

name: string;

pick {

Str or Pstring =>

s: string;

Real =>

r: real;

}

};

the following function could be used to print out the value of an expression of typeref Constant 1:

­ 36 ­

printconst(c: ref Constant)

{

sys->print("%s: ", c.name);

pick x := c {

Str =>

sys->print("%s\n", x.s);

Pstring =>

sys->print("[%s]\n", x.s);

Real =>

sys->print("%f\n", x.r);

};

}

9.10. break statement

The break statement

break identifieropt ;

terminates execution ofwhile 1, do , for , case , alt , and pick statements. Execution of break
with no identifier transfers control to the statement after the innermost while , do , for , case ,
alt , or pick statement in which it appears as a substatement. Execution of break with an iden­
tifier transfers control to the next statement after the unique enclosing while , do , for , case ,
alt , or pick labeled with that identifier.

9.11. continue statement

The continue statement

continue identifieropt ;

restarts execution ofwhile 1, do , and for statements. Execution of continue with no identifier
transfers control to the end of the innermost while , do , or for statement in which the
continue appears as a substatement. The expression that controls the loop is tested and if it
succeeds, execution continues in the loop. The initialization portion of for is not redone.

Similarly, execution of continue with an identifier transfers control to the end of the enclos­
ing while , do , or for labeled with the same identifier.

9.12. return statement

The return statement,

return expressionopt ;

returns control to the caller of a function. If the function returns a value (that is, if its definition and decla-
ration mention a return type), the expression must be given and it must have the same type that the function
returns. If the function returns no value, the expression must generally be omitted. However, if a function
returns no value, and its last action before returning is to call another function with no value, then it may
use a special form ofreturn 1 that names the function being called. For example,

f, g: fn(a: int);

f(a: int) {

. . .

return g(a+1);

}

is permitted. Its effect is the same as

­ 37 ­

f(a: int) {

. . .

g(a+1);

return;

}

This ad hoc1 syntax offers the compiler a cheap opportunity to recognize tail­recursion.

Running off the end of a function is equivalent to return with no expression.

9.13. spawn statement

The spawn statement creates a new thread of control. It has the form

spawn term (expression-listopt) ;

The term and expression-list are taken to be a function call. Execution ofspawn1 creates an asyn­
chronous, independent thread of control, which calls the function in the new thread context. This
function may access the accessible objects in the spawning thread; the two threads share a com­
mon memory space. These accessible objects include the data global to the current module and
reference data passed to the spawned function. Threads are preemptively scheduled, so that
changes to objects used in common between threads may occur at any time. The Limbo language
provides no explicit synchronization primitives; §12.3 shows examples of how to use channel
communication to control concurrency.

9.14. exit statement

The exit statement

exit ;

terminates a thread and frees any resources belonging exclusively to it.

9.15. raise statement

The raise statement

raise expressionopt ;

raises an exception in a thread. Theexpression1 is either a string describing the failure, or an excep­
tion name and its parameter values, if any. If an expression is not given, the raise statement
must appear in the body of an exception handler; it raises the currently active exception.

9.16. Exception handler

Various errors in a Limbo program can be detected only at run­time. These include program­
ming errors such as an attempt to index outside the bounds of an array, system errors such as
exhausting memory, and user­defined exceptions declared at compile­time by exception declara­
tions and caused at run­time by the raise statement. A group of statements can have an associ­
ated exception handler:

{ statements} exception identifieropt{ qual-statement-sequence}

The first run-time exception raised by any of thestatements1, or functions they call, that is not handled
by an exception handler enclosing the statement raising the exception will terminate execution of
the statements at that point, and transfer control to the clause in the sequence of qualified state­
ments that matches the exception. An exception represented by a string is matched by a qualifier
that is either the same string value, or a prefix of it followed by * . The optional identifier follow­
ing exception is set to the value of the exception string for the execution of the qualified state­
ment. If execution of the qualified statement completes, control passes to the statement following
the exception­handling statement.

­ 38 ­

A qualified statement labeled by a user­defined exception name matches that exception. If the
exception has parameters, the identifier following exception will be be declared and initialized
as a tuple of the parameter values for the scope of the qualified statement, allowing the values to
be recovered by tuple assigment.

The qualifier * matches any string or user­defined exception. An exception that is raised and
not successfully handled by a thread will terminate the thread.

10. Referring to modules; import

As discussed above, modules present constants, functions, and types in their interface. Their
names may be the same as names in other modules or of local objects or types within a module
that uses another. Name clashes are avoided because references to the entities presented by a
module are qualified by the module type name or an object of that module type.

For example, after the module and variable declarations

M: module {

One: con 1;

Thing: adt {

t: int;

f: fn();

};

g: fn();

};

m: M;

the nameOne1 refers to the constant defined in module Monly in the contexts M->One or m->One;
the name Thing as the particular data type associated with the Mmodule can be referred to only
in contexts like

th1: M->Thing;

th2: m->Thing;

Finally, to call a function defined either as a top-level member of the module, or as a member of one of its
adt 1, it is necessary to declare, and also dynamically initialize using load , a handle for the mod­
ule. Then calls of the form

m->g();

m->th1.f();

become appropriate. It is possible to use just the type name of a module to qualify its constants and types
because constants and types can be understood without having the code and data present. Calling a func-
tion declared by a module or one of itsadt 1 requires loading the module.

The import declaration

identifier-list : import identifier ;

lifts the identifiers in theidentifier­list1 into the scope in which import appears, so that they are
usable without a qualifier. The identifier after the import keyword is either a module identifier,
or an identifier declared as having that type. The initial list of identifiers specifies those con­
stants, types, and functions of the module whose names are promoted. In the case of constants
and types, import merely makes their names accessible without using a qualifier. In the exam­
ple above, if the module declaration above had been followed by

One, Thing: import M;

then one could refer to justOne1 instead of M->One; similarly an object could be declared like

th: Thing;

­ 39 ­

For functions, and alsoadt 1 with functions as members, import must specify a module variable
(as opposed to a module identifier). Each imported name is associated with the specified module
variable, and the current value of this module variable controls which instance of the module will
be called. For example, after

g, Thing: import m;

then

g();

is equivalent to

m->g();

and

th: Thing;

th.f();

is equivalent to

th: M->Thing;

m->th.f();

When the module declaration for the module being implemented is encountered, an implicitimport 1 of
all the names of the module is executed. That is, given

implement Mod;

. . .

Mod: module {

. . .

};

the constants and types ofMod1 are accessed as if they had been imported; the functions declared in
Mod are imported as well, and refer dynamically to the current instance of the module being
implemented.

11. Scope

The scope of an identifier is the lexical range of a program throughout which the identifier
means a particular type of, or instance of, an object. The same identifier may be associated with
several different objects in different parts of the same program.

The names of members of an adt occupy a separate, nonconflicting space from other identi­
fiers; they are declared in a syntactically distinct position, and are always used in a distinguish­
able way, namely after the . selection operator. Although the same scope rules apply to adt
members as to other identifiers, their names may coincide with other entities in the same scope.

Similarly, the names of constants, functions, and adt appearing within a module declaration
are ordinarily qualified either with the name of the module or with a module variable using the
-> notation. As discussed above, the import declaration lifts these names into the current scope.

Identifiers declared in a top­declaration (§5) have scope that lasts from the declaration through­
out the remainder of the file in which it occurs, unless it is overridden by a redeclaration of that
name within an inner scope. Each function definition, and each block within a function, intro­
duces a new scope. A name declared within the block or function (including a formal argument
name of a function) has a scope that begins at the completion of its declaration and lasts until the
end of the block or function. If an already­declared identifier is redeclared within such an inner
scope, the declaration previously in force is used in any initialization expression that is part of the
new declaration.

­ 40 ­

As discussed above, within case alt and pick , each qualifier and the statements following it
form an inner scope just like a block.

The scope of a label is restricted to the labeled statement, and label names may coincide with
those of other entities in the same scope.

11.1. Forward referencing

In general, names must be declared before they are used.

The first exception to this rule is that a function local to a module need not have a declaration
at all; it is sufficient to give its definition, and that definition may appear anywhere in the mod­
ule.

The general rule implies that no adt may contain, as a member, an adt not previously
declared (including an instance of itself). A second exception to this rule applies to ref adt
types. An adt may contain a member whose type is a ref to itself, or to another adt even if the
second adt has not yet been declared. Unless a special notation is used, such references are
restricted: all mutual or self references among adt are checked statically throughout all the adt
visible in a module to determine which members refer to other adt . Any member of an adt of
ref adt type that refers directly, or indirectly through a chain of references, back to its own
underlying type may not be assigned to individually; it can gain a value only by an assignment to
the adt as a whole. For example, in

Tree: adt {

l: ref Tree;

r: ref Tree;

t: ref Ntree;

};

Ntree: adt {

t: ref Tree;

};

t1 := Tree(nil, nil, nil); # OK

t2 := Tree(ref t1, ref t1, nil); # OK

t1 = Tree(ref t1, ref t2, nil); # OK

t1.l = ... ; # not OK

nt := ref Ntree(nil); # OK

nt.t = ... # not OK

the first three assignments are correct, but any assignment tot1.l 1 is forbidden, because it is self­
referential. The situation is the same with the mutually referential fields of the Tree and Ntree
adt .

These restrictions suffice to prevent the creation of circular data structures. Limbo implemen­
tations guarantee to destroy all data objects not involved in such circularity immediately after
they become non­referenced by active tasks, whether because their names go out of scope or
because they are assigned new values. This property has visible effect because certain system
resources, like windows and file descriptors, can be seen outside the program. In particular, if a
reference to such a resource is held only within an adt , then that resource too is destroyed when
the adt is.

The default rules are burdensome because they impede the construction even of harmless
structures like trees. Therefore an escape is provided: using the word cyclic before the type in
an adt member removes the circular­reference restriction for that member. For example,

­ 41 ­

Tree: adt {

l: cyclic ref Tree;

r: cyclic ref Tree;

t: ref Ntree;

};

Ntree: adt {

t: cyclic ref Tree;

};

t1 := Tree(nil, nil, nil); # OK

t2 := Tree(ref t1, ref t1, nil); # OK

t1 = Tree(ref t1, ref t2, nil); # OK

t1.l = ... ; # OK now

nt := ref Ntree(nil); # OK

nt.t = ... # OK now

With the use ofcyclic 1, circular data structures can be created. When they become unreferenced
except by themselves, they will be garbage­collected eventually, but not instantly.

11.2. Type equality and compatibility

In an assignment and in passing an actual argument to a function, the types of the target and
the expression being assigned or passed must be equal (with certain exceptions, e.g. assignment
of nil to a reference type). When a function is defined, its type must be equal to the type of a
function with the same name if one is in scope. Type equality is determined as follows.

Two basic types are equal if and only if they are identical.

Two tuple types are equal if and only if they are composed of equal types in the same order.

Two array types are equal if and only if they are arrays of equal types. The size of an array is
not part of its type.

Two list types are equal if and only if they are composed of equal types.

Two channel types are equal if and only if they transmit equal types.

Two adt types are equal if and only if their data members have the same names and corre­
spondingly equal types, including any cyclic attribute. The order of member declaration is
insignificant, and constant and function members of an adt do not enter into the comparison, nor
does the name of the adt type itself. In particular, with the declarations

A: adt { x: ref B; };

B: adt { x: ref A; };

the typesA1 and B are equal.

Two ref adt types are equal if and only if they are references to equal adt types.

Two module types are equal if and only if their data and function members have the same
names and correspondingly equal types; the order of their mention is insignificant. Constant
members and type members do not enter into the comparison.

Two function types are equal if and only if their return values have the same type and their
argument lists have correspondingly equal types. Any self attributes given to arguments must
match. Names given to arguments do not enter into the comparison.

A type name has the same type as the type from which it was constructed.

When a module is loaded, the module stored in the file system must have a type that is compati­
ble with the type mentioned in the load expression. The type of the stored module type is com­
patible with the mentioned type if and only if all data members of the two types are equal in

­ 42 ­

name and type, and all adt or functions actually mentioned by the program executing load
have names and types equal to corresponding members of the stored module.

12. Examples

Because Limbo was designed for the Inferno environment, several of these examples consist of
simplified versions of already simple Inferno applications in a prototype Inferno implementation.
Some appreciation for the resources available in this environment should become evident, but its
full description is available elsewhere; the discussion here will focus on language features. How­
ever, several of the programs use facilities from the module Sys , which provides an interface to a
file system and its methods resembling those of Unix or Plan 9, as well as other useful library
facilities.

Some of the programs are annotated with line numbers; they are there only for descriptive pur­
poses.

12.1. A simple command interpreter module

This version of a shell program reads from a keyboard and executes ‘commands’ typed by the
user. Its own interface has the type of a Commandmodule, and that is the type of the things it
executes. In particular, it can call modules like the hello example at the beginning of the paper.

1 implement Command;

2 include "sys.m";

3 include "draw.m";

4 sys: Sys;

5 stdin: ref Sys->FD;

6 Command: module

7 {

8 init: fn(nil: ref Draw->Context, nil: list of string);

9 };

After the boilerplate on lines 1-3, the variablessys 1 and stdin are declared on lines 4 and 5. The
I/O operations of the Sys module use the ref FD type to refer to open files.

­ 43 ­

10 init(ctx: ref Draw->Context, nil: list of string)

11 {

12

13

14 buf := array[256] of byte;

15 sys = load Sys Sys->PATH;

16 stdin = sys->fildes(0);

17 for(;;) {

18 sys->print("$ ");

19 n := sys->read(stdin, buf, len buf);

20 if(n <= 0)

21 break;

22 (nw, arg) :=

sys->tokenize(string buf[0:n], " \t\n");

23 if(nw != 0)

24 exec(ctx, arg);

25 }

26 }

Line 10: conventionally, stand-alone modules are started by calling theirinit 1 functions. The
Commandmodule follows this convention. The arguments are presented as a list of strings. In
this simple example, the command interpreter itself ignores its argument, so it need not be given
a name.

Local variables are declared on lines 12­14; line 15 loads the Sys module and stores a handle
for it in the variable sys . Line 16 creates an FD for the standard input by calling the fildes
function of the Sys module using the -> operator; the notation modhandle->func(...) speci­
fies a call to the function named func in the module currently referred to by modhandle . (In
general there can be several modules of the same type and name active, and there can also be
unrelated modules containing identically named functions. The import declaration, described
in §6.6 above, can be used to abbreviate the references when names do not clash.)

The loop on lines 17­25 prints a prompt (line 18), reads a line from the standard input (line 19),
parses it into tokens (line 22), and executes the command.

The function call sys->tokenize is worth discussing as an example of style. It takes two
strings as arguments. The characters in the second string are interpreted as separators of tokens
in the first string. It returns a tuple whose first member is the number of tokens found, and
whose second is a list of strings containing the tokens found: its declaration is

tokenize: fn (s: string, sep: string): (int, list of string);

In the example, the second argument is" \t\n" , so that the routine returns the number of, and a list of,
‘words’ separated by blanks, tabs, and new-lines. The free use of strings, lists, and tuple-returning func-
tions is common in Limbo.

The sys->read routine gathers an array of bytes into buf . Thus the expression for the first
argument of sys->tokenize converts this array to a string by slicing the array with [0:n] ,
using the actual number of bytes gathered by the read , and using a cast.

At lines 23­24, if there were any words found, exec is called:

­ 44 ­

27 exec(ctx: ref Draw->Context, args: list of string)

28 {

29 c: Command;

30 cmd, file: string;

31 cmd = hd args;

32 file = cmd + ".dis";

33 c = load Command file;

34 if(c == nil)

35 c = load Command "/dis/"+file;

36 if(c == nil) {

37 sys->print("%s: not found\n", cmd);

38 return;

39 }

40 c->init(ctx, args);

41 }

On lines 31 and 32 ofexec 1, cmd is set to the first of the words in the argument list, and the string
.dis is concatenated to it (to account for the fact that Limbo object program files are convention­
ally named using this suffix). On line 33 an attempt is made to load the named module from the
derived file name; it will fail if the file does not exist. The attempt will succeed, and a non­nil
handle assigned to c , if the file is found, and if the module stored in that file does in fact imple­
ment the Commandmodule type. In case this fails, lines 34­35 make another attempt, after prefix­
ing /dis/ to the file name.

If either attempt to get a handle to the named module succeeds, c will contain a valid handle to
it; line 40 calls its init function, passing it the whole argument list. When it returns, the exec
function returns, and the main loop resumes.

12.2. Infrared remote control

This example shows two instances of a module for interfacing to a TV remote control; one is for
the real remote, which in this case is connected to a serial port on a set­top box, and the other is
simulated for testing programs running on a regular operating system. The techniques of special
interest are the dynamic use of modules and the communication using a channel.

The module is used by creating a channel and passing it to the module’s init function, which
returns a success/error indicator and starts an asynchronous process to read the remote control.
The user of the module executes a receive on the channel whenever it wishes to accept a button­
push.

The (abridged) module declaration is

Ir: module

{

Codes buttons on IR remote control

Zero: con 0;

One: con 1;

. . .

Mute: con 23;

Error: con 9999;

init: fn(chan of int): int;

PATH: con "/dis/ir.dis";

SIMPATH: con "/dis/irsim.h";

};

­ 45 ­

The implementation for the ‘real’ remote control is

implement Ir;

include "ir.m";

include "sys.m";

FD, Dir: import Sys;

sys: Sys;

init(keys: chan of int): int

{

cfd, dfd: ref FD;

sys = load Sys Sys->PATH;

cfd = sys->open("/dev/eia1ctl", sys->OWRITE);

if(cfd == nil)

return -1;

sys->fprint(cfd, "b9600");

dfd = sys->open("/dev/eia1", sys->OREAD);

cfd = nil;

spawn reader(keys, dfd);

return 0;

}

The init 1 routine accepts a chan argument; it will be used by the module to send codes for the
buttons pressed by the user. In this routine, the calls to sys->open and sys->fprint open
and set up the device data and control files /dev/eia1 and /dev/eia1ctl used to communi­
cate with the device itself. The important step is at the end: the spawn statement creates a new,
asynchronous task to read the device, using a routine that is passed the communications channel
and the FD for the device:

reader(keys: chan of int, dfd: ref FD)

{

n, ta, tb: int;

dir: Dir;

b1:= array[1] of byte;

b2:= array[1] of byte;

find the number of bytes already

queued and flush that many

(n, dir) = sys->fstat(dfd);

if(n >= 0 && dir.length > 0) {

while(dir.length) {

n = sys->read(dfd,

array[dir.length] of byte,

dir.length);

if(n < 0)

break;

dir.length -= n;

}

}

­ 46 ­

loop: for(;;) {

n = sys->read(dfd, b1, len b1);

if(n <= 0)

break;

ta = sys->millisec();

Button pushes are pairs of characters

that arrive closer together than

200 ms. Longer than that is likely

to be noise.

for(;;) {

n = sys->read(dfd, b2, 1);

if(n <= 0)

break loop;

tb = sys->millisec();

if(tb - ta <= 200)

break;

ta = tb;

b1[0] = b2[0];

}

map the character pair; the significant

bits are the lowest 5.

case ((int b1[0]&16r1f)<<5) | (int b2[0]&16r1f) {

975 => n = Ir->Zero;

479 => n = Ir->One;

. . .

791 => n = Ir->Mute;

* => n = Ir->Error;

}

found a button-push; send the value

keys <-= n;

}

keys <-= Ir->Error;

}

The code in the middle is related to noise-filtering and is uninteresting in detail except as it illustrates some
of the methods provided by theSys 1 module; the crucial actions are found at the bottom, where the
routine sends either a true button­push or an error code over the channel to the module’s client.

Here is another implementation of the same interface. Its init function performs the same
kind of initialization as the other version, but using the operating system’s keyboard files
/dev/cons and /dev/consctl . In the Inferno environment, operations corresponding to the
Unix ‘stty’ primitive are accomplished by writing messages to a control file associated with the
file that handles the data.

­ 47 ­

implement Ir;

include "ir.m";

include "sys.m";

FD: import Sys;

sys: Sys;

cctlfd: ref FD;

init(keys: chan of int): int

{

dfd: ref FD;

sys = load Sys Sys->PATH;

cctlfd = sys->open("/dev/consctl", sys->OWRITE);

if(cctlfd == nil)

return -1;

sys->write(cctlfd, array of byte "rawon", 5);

dfd = sys->open("/dev/cons", sys->OREAD);

if(dfd == nil)

return -1;

spawn reader(keys, dfd);

return 0;

}

A fine point: the variablecctlfd 1 that contains the FD for the control device is declared external to
the init function, even though it appears to be used only inside it. Programming cleanliness sug­
gests that its declaration be moved inside, but here that won’t work; device control files in
Inferno retain settings like ‘raw mode’ only while they remain open. If cctlfd were declared
inside init , then returning from init would destroy the last reference to the FD for the control
file, and the device would be closed automatically.

The reader function for this module has the same structure as the first example, but doesn’t
have to worry about a noisy infrared detector:

­ 48 ­

reader(keys: chan of int, dfd: ref FD)

{

n: int;

b:= array[1] of byte;

for(;;) {

n = sys->read(dfd, b, 1);

if(n != 1)

break;

case int b[0] {

’0’ => n = Ir->Zero;

’1’ => n = Ir->One;

. . .

16r7f => n = Ir->Mute;

* => n = Ir->Error;

}

keys <-= n;

}

keys <-= Ir->Error;

}

The following module can be used to test the above code. It simply prints the name of the button that was
pressed.

implement Irtest;

include "sys.m";

include "draw.m";

FD: import Sys;

include "ir.m";

Irtest: module

{

init: fn(nil: ref Draw->Context, nil: list of string);

};

ir: Ir;

sys: Sys;

­ 49 ­

init(nil: ref Draw->Context, nil: list of string)

{

c: int;

stderr: ref FD;

irchan := chan of int;

sys = load Sys Sys->PATH;

stderr = sys->fildes(2);

If the real IR remote application can

be found, use it, otherwise use the simulator:

ir = load Ir Ir->PATH;

if(ir == nil)

ir = load Ir Ir->SIMPATH;

if(ir == nil) {

%r format code means the last system error string

sys->fprint(stderr, "load ir: %r\n");

return;

}

if(ir->init(irchan) != 0) {

sys->fprint(stderr, "Ir.init: %r\n");

return;

}

names := array[] of {

"Zero",

"One",

. . .

"Mute",

};

for(;;) {

c = <-irchan;

if(c == ir->Error)

sys->print("Error %d\n", c);

else

sys->print("%s\n", names[c]);

}

}

Finally, here is a snippet from a movie application that uses the IR module; it demonstrates howalt 1 is
useful for dealing with multiple events. This is only one of the functions of the movie module, so
not everything is defined. It uses the Mpeg module, which actually copies the MPEG data stream
to the screen asynchronously. Its play function takes, as one of its arguments, a channel; before
starting to play it writes a string on the channel. An empty string indicates success at locating the
movie; a non­empty string contains an error message. When it finishes, it writes another string.

­ 50 ­

movie(entry: ref Dbinfo, cc: chan of int)

{

i: int;

m: Mpeg;

b: ref Image;

m = load Mpeg Mpeg->PATH;

if (m == nil)

return;

make a place on the screen

w := screen.window(screen.image.r);

mr := chan of string;

s := m->play(w, 1, w.r, entry.movie, mr);

if(s != "")

return;

wait for the end of the movie

while watching for button pushes

for(;;) {

alt {

<-mr =>

return;

i = <-cc =>

case i {

Ir->Select =>

m->ctl("stop");

Ir->Up or Ir->Dn =>

m->ctl("pause");

}

}

}

}

12.3. Monitors

Statically allocated storage within a module is accessible to all the functions of that module,
and there is no explicit mechanism in Limbo for synchronizing concurrent updates to this storage
from several tasks. However, it is straightforward to build a variety of concurrency­control
mechanisms by using channel communications.

An example is a module that implements a Monitor abstract data type. Each instance of
Monitor has a lock and an unlock operation; calling lock delays if another task holds the
lock; calling unlock releases the lock and enables any other task attempting to execute lock .

implement Monitors;

Monitors: module

{

Monitor: adt {

create: fn(): Monitor;

lock: fn(m: self Monitor);

unlock: fn(m: self Monitor);

ch: chan of int;

};

};

­ 51 ­

Monitor.create(): Monitor

{

m := Monitor(chan of int);

spawn lockproc(m.ch);

return m;

}

Monitor.lock(m: self Monitor)

{

m.ch <- = 0;

}

Monitor.unlock(m: self Monitor)

{

<- m.ch;

}

lockproc(ch: chan of int)

{

for (;;) {

<- ch; # wait for someone to lock

ch <- = 0; # wait for someone to unlock

}

}

It would be used like this:

mp: Mon;

Monitor: import mp;

mp = load Mon "...";

l := Monitor.create();

l.lock();

region of code to be protected;

only one thread can execute here at once.

l.unlock();

The create 1 method of Monitor allocates an instance of a Monitor containing an initialized
channel. It also creates a thread executed in the lockproc routine, which repeatedly reads from
the channel, then writes on it. The values transmitted over the channel are of no interest; it is the
pure fact of communication that is put to use. The lock routine sends a message; in the idle
state, the lockproc thread reads it and the sender proceeds. Meanwhile, lockproc tries to
send a message over the same channel. If another thread attempts to lock , there is no reader for
the channel, and so its transmission will block. At some point, the thread that gained the lock
calls unlock , which receives from the channel. Depending on timing, this reception enables exe­
cution of either lockproc or one of the threads attempting to send via lock .

There is a simpler implementation of Monitor , using a buffered channel. The create opera­
tion simply allocates a channel with a one­element buffer:

Monitor.create(): Monitor

{

return Monitor(chan[1] of int);

}

The lock 1 and unlock operations have the same implementation. Because of the buffer, when a
process locks an unlocked Monitor , the send succeeds but fills the channel. Subsequent
attempts to lock will therefore block as long as the channel is full. Unlock removes the value
from the channel, making it empty, and allowing another lock to proceed. The lockproc is not

­ 52 ­

needed. Note that a program using the module would not need to be recompiled to use the new
implementation, because the module’s signature and use remains the same. This is the imple­
mentation of the Lock module in the Limbo library for Inferno.

Limbo channels are usually unbuffered: a sender blocks until there is a receiver, and processes
synchronise at each communication. Buffered channels are used sparingly in Limbo programs,
typically to improve throughput or, less often, in specialized ways as in the monitor example
above.

12.4. Guarding sends and receives

In some applications, a process takes input from one channel, and sends it on to another chan­
nel, possibly having transformed it. In case the input and output processes run at different rates,
the process itself acts as a buffer, holding a queue of values internally. If the input process were
faster than the output process, the queue would accumulate values faster than they are con­
sumed, exhausting memory. To prevent that, when the queue reaches a specified limit, the pro­
cess should guard against receiving from the input channel, but continue sending to the output
channel. Conversely, when the queue is empty, it should not attempt to send. The alt state­
ment allows a process to choose between sending and receiving based on which channels are
ready, but the process must also account for the current state of the queue. This example shows a
way to make a buffered channel of strings from an unbuffered channel. It is written as a module
whose bufchan function takes a chan of string and a size as argument, and returns a new
channel; it creates an asynchronous task that accepts input from the argument channel and saves
up to size strings, meanwhile trying to send them to its user.

­ 53 ­

implement Bufchan;

Bufchan: module {

bufchan: fn(c: chan of string, size: int): chan of string;

};

xfer(oldchan, newchan: chan of string, size: int)

{

temp := array[size] of string;

fp := 0; # first string in buffer

n := 0; # number of strings in buffer

dummy := chan of string;

sendch, recvch: chan of string;

s: string;

for (;;) {

sendch = recvch = dummy;

if (n > 0)

sendch = newchan;

if (n < size)

recvch = oldchan;

alt {

s = <-recvch =>

temp[(fp+n)%size] = s;

n++;

sendch <- = temp[fp] =>

temp[fp++] = nil;

n--;

if (fp>=size)

fp -= size;

}

}

}

bufchan(oldchan: chan of string, size: int): chan of string

{

newchan := chan of string;

spawn xfer(oldchan, newchan, size);

return newchan;

}

The module is somewhat specialized, but it illustrates useful programming techniques. The most interest-
ing occurs inxfer 1, which does the work. The problem xfer faces is that it doesn’t want to
receive input when its buffer is full, nor to try to send when it has nothing to transmit. The solu­
tion here is to use a dummy channel on which nothing is ever sent or received; in the alt state­
ment, that channel substitutes for the real input channel when the buffer is full, and for the out­
put channel when the buffer is empty.

The module could be used in the following way:

­ 54 ­

Bufchan: module {

PATH: con "/dis/lib/bufchan.dis";

bufchan: fn(c: chan of string, size: int): chan of string;

};

bufc := load Bufchan Bufchan->PATH;

sourcech := chan of string;

... (here, hand off sourcech to a process that

reads strings from it and copies them to ch)

ch: chan of string = bufc->bufchan(sourcech, 10);

s := <- ch;

13. Syntax summary

This section summarizes the grammar of Limbo above the lexical level; constants and identi­
fiers are left undefined.

program:
implement identifier-list ; top-declaration-sequence

top-declaration-sequence:
top-declaration
top-declaration-sequence top-declaration

top-declaration:
declaration
identifier-list := expression;
identifier-list = expression;
(identifier-list) := expression;
module-declaration
function-definition
adt-declaration

declaration:
identifier-list : type ;
identifier-list : type = expression;
identifier-list : con expression;
identifier-list : import identifier ;
identifier-list : type type ;
identifier-list : exception tuple-typeopt

include string-constant ;

identifier-list:
identifier
identifier-list , identifier

expression-list:
expression
expression-list, expression

type:
data-type
function-type

­ 55 ­

data-type:
byte
int
big
real
string
tuple-type
array of data-type
list of data-type
chan of data-type
adt-type
ref adt-type
ref function-type
module-type
module-qualified-type
type-name

tuple-type:
(data-type-list)

data-type-list:
data-type
data-type-list, data-type

adt-type:
identifier
module-qualified-type

module-type:
identifier

module-qualified-type:
identifier -> identifier

type-name:
identifier

function-type:
fn function-arg-ret

function-arg-ret:
(formal-arg-listopt) raisesopt

(formal-arg-listopt) : data-type raisesopt

formal-arg-list:
formal-arg
formal-arg-list , formal-arg

formal-arg:
nil-or-ID-list : type
nil-or-ID : self ref opt identifier
nil-or-ID : self identifier
*

nil-or-ID-list:
nil-or-ID
nil-or-ID-list , nil-or-ID

­ 56 ­

nil-or-ID:
identifier
nil

raises:
raises (nil-or-ID-list)
raises nil-or-ID

module-declaration:
identifier : module { mod-member-listopt } ;

mod-member-list:
mod-member
mod-member-list mod-member

mod-member:
identifier-list : function-type ;
identifier-list : data-type ;
adt-declaration
identifier-list : con expression;
identifier-list : type type;

adt-declaration:
identifier : adt { adt-member-listopt } ;

adt-member-list:
adt-member
adt-member-list adt-member

adt-member:
identifier-list : cyclic opt data-type ;
identifier-list : con expression;
identifier-list : function-type ;
pick { pick-member-list}

pick-member-list:
pick-tag-list =>
pick-member-list pick-tag-list=>
pick-member-list identifier-list: cyclic opt data-type ;

pick-tag-list:
identifier
pick-tag-list or identifier

function-definition:
function-name-part function-arg-ret{ statements}

function-name-part:
identifier
function-name-part. identifier

statements:
(empty)
statements declaration
statements statement

­ 57 ­

statement:
expression;
;
{ statements}
if (expression) statement
if (expression) statementelse statement
labelopt while (expressionopt) statement
labelopt do statementwhile (expressionopt) ;
labelopt for (expressionopt ; expressionopt ; expressionopt) statement
labelopt case expression{ qual-statement-sequence}
labelopt alt { qual-statement-sequence}
labelopt pick identifier := expression{ pqual-statement-sequence}
break identifieropt ;
continue identifieropt ;
return expressionopt ;
spawn term (expression-listopt) ;
exit ;
raise expressionopt ;
{ statements} exception identifieropt{ qual-statement-sequence}

label:
identifier :

qual-statement-sequence:
qual-list =>
qual-statement-sequence qual-list=>
qual-statement-sequence statement
qual-statement-sequence declaration

qual-list:
qualifier
qual-list or qualifier

qualifier:
expression
expressionto expression
*

pqual-statement-sequence:
pqual-list =>
pqual-statement-sequence pqual-list=>
pqual-statement-sequence statement
pqual-statement-sequence declaration

pqual-list:
pqualifier
pqual-list or pqualifier

pqualifier:
identifier
*

­ 58 ­

expression:
binary-expression
lvalue-expression assignment-operator expression
(lvalue-expression-list) = expression
send-expression
declare-expression
load-expression

binary-expression:
monadic-expression
binary-expression binary-operator binary-expression

binary-operator: one of
** * / % + - << >> < > <= >= == != & ^ | :: && ||

assignment-operator: one of
= &= |= ^= <<= >>= += -= *= /= %=

lvalue-expression:
identifier
nil
term [expression]
term [expression:]
term . identifier
(lvalue-expression-list)
* monadic-expression

lvalue-expression-list:
lvalue-expression
lvalue-expression-list, lvalue-expression

expression:
term
monadic-operator monadic-expression
array [expression] of data-type
array [expressionopt] of { init-list }
list of { expression-list}
chan of data-type
chan [expressionopt] of data-type
data-type monadic-expression

term:
identifier
constant
real-constant
string-constant
nil
(expression-list)
term . identifier
term -> term
term (expression-listopt)
term [expression]
term [expression: expression]
term [expression:]
term ++
term --

­ 59 ­

monadic-operator: one of
+ - ! ~ ref * ++ -- <- hd tl len tagof

init-list:
element
init-list , element

element:
expression
expression=> expression
* => expression

send-expression:
lvalue-expression<- = expression

declare-expression:
lvalue-expression:= expression

load-expression:
load identifier expression

