362 lines
9.8 KiB
Markdown
362 lines
9.8 KiB
Markdown
|
---
|
|||
|
comments: true
|
|||
|
---
|
|||
|
|
|||
|
# 空间复杂度
|
|||
|
|
|||
|
「空间复杂度 Space Complexity」统计 **算法使用内存空间随着数据量变大时的增长趋势** 。这个概念与时间复杂度很类似。
|
|||
|
|
|||
|
## 算法相关空间
|
|||
|
|
|||
|
算法运行中,使用的内存空间主要有以下几种:
|
|||
|
|
|||
|
- 「输入空间」用于存储算法的输入数据;
|
|||
|
- 「暂存空间」用于存储算法运行中的变量、对象、函数上下文等数据;
|
|||
|
- 「输出空间」用于存储算法的输出数据;
|
|||
|
|
|||
|
!!! tip
|
|||
|
|
|||
|
通常情况下,空间复杂度统计范围是「暂存空间」+「输出空间」。
|
|||
|
|
|||
|
暂存空间可分为三个部分:
|
|||
|
|
|||
|
- 「暂存数据」用于保存算法运行中的各种 **常量、变量、对象** 等。
|
|||
|
- 「栈帧空间」用于保存调用函数的上下文数据。系统每次调用函数都会在栈的顶部创建一个栈帧,函数返回时,栈帧空间会被释放。
|
|||
|
- 「指令空间」用于保存编译后的程序指令,**在实际统计中一般忽略不计**。
|
|||
|
|
|||
|
![space_types](space_complexity.assets/space_types.png)
|
|||
|
|
|||
|
<p style="text-align:center"> Fig. 算法使用的相关空间 </p>
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title=""
|
|||
|
/* 类 */
|
|||
|
class Node {
|
|||
|
int val;
|
|||
|
Node next;
|
|||
|
Node(int x) { val = x; }
|
|||
|
}
|
|||
|
|
|||
|
/* 函数(或称方法) */
|
|||
|
int function() {
|
|||
|
// do something...
|
|||
|
return 0;
|
|||
|
}
|
|||
|
|
|||
|
int algorithm(int n) { // 输入数据
|
|||
|
final int a = 0; // 暂存数据(常量)
|
|||
|
int b = 0; // 暂存数据(变量)
|
|||
|
Node node = new Node(0); // 暂存数据(对象)
|
|||
|
int c = function(); // 栈帧空间(调用函数)
|
|||
|
return a + b + c; // 输出数据
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title=""
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title=""
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 推算方法
|
|||
|
|
|||
|
空间复杂度的推算方法和时间复杂度总体类似,只是从统计 “计算操作数量” 变为统计 “使用空间大小” 。与时间复杂度不同的是,**我们一般只关注「最差空间复杂度」**。这是因为内存空间是一个硬性要求,我们必须保证在所有输入数据下都有足够的内存空间预留。
|
|||
|
|
|||
|
**最差空间复杂度中的 “最差” 有两层含义**,分别为输入数据的最差分布、算法运行中的最差时间点。
|
|||
|
|
|||
|
- **以最差输入数据为准。** 当 $n < 10$ 时,空间复杂度为 $O(1)$ ;但是当 $n > 10$ 时,初始化的数组 `nums` 使用 $O(n)$ 空间;因此最差空间复杂度为 $O(n)$ ;
|
|||
|
- **以算法运行过程中的峰值内存为准。** 程序在执行最后一行之前,使用 $O(1)$ 空间;当初始化数组 `nums` 时,程序使用 $O(n)$ 空间;因此最差空间复杂度为 $O(n)$ ;
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title=""
|
|||
|
void algorithm(int n) {
|
|||
|
int a = 0; // O(1)
|
|||
|
int[] b = new int[10000]; // O(1)
|
|||
|
if (n > 10)
|
|||
|
int[] nums = new int[n]; // O(n)
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title=""
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title=""
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
**在递归函数中,需要注意统计栈帧空间。** 例如函数 `loop()`,在循环中调用了 $n$ 次 `function()` ,每轮中的 `function()` 都返回并释放了栈帧空间,因此空间复杂度仍为 $O(1)$ 。而递归函数 `recur()` 在运行中会同时存在 $n$ 个未返回的 `recur()` ,从而使用 $O(n)$ 的栈帧空间。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title=""
|
|||
|
int function() {
|
|||
|
// do something
|
|||
|
return 0;
|
|||
|
}
|
|||
|
/* 循环 */
|
|||
|
void loop(int n) {
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
function();
|
|||
|
}
|
|||
|
}
|
|||
|
/* 递归 */
|
|||
|
void recur(int n) {
|
|||
|
if (n == 1) return;
|
|||
|
return recur(n - 1);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title=""
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title=""
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
## 常见类型
|
|||
|
|
|||
|
设输入数据大小为 $n$ ,常见的空间复杂度类型有(从低到高排列)
|
|||
|
|
|||
|
$$
|
|||
|
\begin{aligned}
|
|||
|
O(1) < O(\log n) < O(n) < O(n^2) < O(2^n) \newline
|
|||
|
\text{常数阶} < \text{对数阶} < \text{线性阶} < \text{平方阶} < \text{指数阶}
|
|||
|
\end{aligned}
|
|||
|
$$
|
|||
|
|
|||
|
![space_complexity_common_types](space_complexity.assets/space_complexity_common_types.png)
|
|||
|
|
|||
|
<p style="text-align:center"> Fig. 空间复杂度的常见类型 </p>
|
|||
|
|
|||
|
!!! tip
|
|||
|
|
|||
|
部分示例代码需要一些前置知识,包括数组、链表、二叉树、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段先聚焦在理解时间复杂度含义和推算方法上。
|
|||
|
|
|||
|
### 常数阶 $O(1)$
|
|||
|
|
|||
|
常数阶常见于数量与输入数据大小 $n$ 无关的常量、变量、对象。
|
|||
|
|
|||
|
需要注意的是,在循环中初始化变量或调用函数而占用的内存,在进入下一循环后就会被释放,即不会累积占用空间,空间复杂度仍为 $O(1)$ 。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="space_complexity_types.java"
|
|||
|
/* 常数阶 */
|
|||
|
void constant(int n) {
|
|||
|
// 常量、变量、对象占用 O(1) 空间
|
|||
|
final int a = 0;
|
|||
|
int b = 0;
|
|||
|
int[] nums = new int[10000];
|
|||
|
ListNode node = new ListNode(0);
|
|||
|
// 循环中的变量占用 O(1) 空间
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
int c = 0;
|
|||
|
}
|
|||
|
// 循环中的函数占用 O(1) 空间
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
function();
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="space_complexity_types.cpp"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="space_complexity_types.py"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
### 线性阶 $O(n)$
|
|||
|
|
|||
|
线性阶常见于元素数量与 $n$ 成正比的数组、链表、栈、队列等。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="space_complexity_types.java"
|
|||
|
/* 线性阶 */
|
|||
|
void linear(int n) {
|
|||
|
// 长度为 n 的数组占用 O(n) 空间
|
|||
|
int[] nums = new int[n];
|
|||
|
// 长度为 n 的列表占用 O(n) 空间
|
|||
|
List<ListNode> nodes = new ArrayList<>();
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
nodes.add(new ListNode(i));
|
|||
|
}
|
|||
|
// 长度为 n 的哈希表占用 O(n) 空间
|
|||
|
Map<Integer, String> map = new HashMap<>();
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
map.put(i, String.valueOf(i));
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="space_complexity_types.cpp"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="space_complexity_types.py"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
以下递归函数会同时存在 $n$ 个未返回的 `algorithm()` 函数,使用 $O(n)$ 大小的栈帧空间。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="space_complexity_types.java"
|
|||
|
/* 线性阶(递归实现) */
|
|||
|
void linearRecur(int n) {
|
|||
|
System.out.println("递归 n = " + n);
|
|||
|
if (n == 1) return;
|
|||
|
linearRecur(n - 1);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="space_complexity_types.cpp"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="space_complexity_types.py"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
![space_complexity_recursive_linear](space_complexity.assets/space_complexity_recursive_linear.png)
|
|||
|
|
|||
|
<p style="text-align:center"> Fig. 递归函数产生的线性阶空间复杂度 </p>
|
|||
|
|
|||
|
### 平方阶 $O(n^2)$
|
|||
|
|
|||
|
平方阶常见于元素数量与 $n$ 成平方关系的矩阵、图。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="space_complexity_types.java"
|
|||
|
/* 平方阶 */
|
|||
|
void quadratic(int n) {
|
|||
|
// 矩阵占用 O(n^2) 空间
|
|||
|
int numMatrix[][] = new int[n][n];
|
|||
|
// 二维列表占用 O(n^2) 空间
|
|||
|
List<List<Integer>> numList = new ArrayList<>();
|
|||
|
for (int i = 0; i < n; i++) {
|
|||
|
List<Integer> tmp = new ArrayList<>();
|
|||
|
for (int j = 0; j < n; j++) {
|
|||
|
tmp.add(0);
|
|||
|
}
|
|||
|
numList.add(tmp);
|
|||
|
}
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="space_complexity_types.cpp"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="space_complexity_types.py"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
在以下递归函数中,同时存在 $n$ 个未返回的 `algorihtm()` ,并且每个函数中都初始化了一个数组,长度分别为 $n, n-1, n-2, ..., 2, 1$ ,平均长度为 $\frac{n}{2}$ ,因此总体使用 $O(n^2)$ 空间。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="space_complexity_types.java"
|
|||
|
/* 平方阶(递归实现) */
|
|||
|
int quadraticRecur(int n) {
|
|||
|
if (n <= 0) return 0;
|
|||
|
int[] nums = new int[n];
|
|||
|
System.out.println("递归 n = " + n + " 中的 nums 长度 = " + nums.length);
|
|||
|
return quadraticRecur(n - 1);
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="space_complexity_types.cpp"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="space_complexity_types.py"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
![space_complexity_recursive_quadratic](space_complexity.assets/space_complexity_recursive_quadratic.png)
|
|||
|
|
|||
|
<p style="text-align:center"> Fig. 递归函数产生的平方阶空间复杂度 </p>
|
|||
|
|
|||
|
### 指数阶 $O(2^n)$
|
|||
|
|
|||
|
指数阶常见于二叉树。高度为 $n$ 的「满二叉树」的结点数量为 $2^n - 1$ ,使用 $O(2^n)$ 空间。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="space_complexity_types.java"
|
|||
|
/* 指数阶(建立满二叉树) */
|
|||
|
TreeNode buildTree(int n) {
|
|||
|
if (n == 0) return null;
|
|||
|
TreeNode root = new TreeNode(0);
|
|||
|
root.left = buildTree(n - 1);
|
|||
|
root.right = buildTree(n - 1);
|
|||
|
return root;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
=== "C++"
|
|||
|
|
|||
|
```cpp title="space_complexity_types.cpp"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
=== "Python"
|
|||
|
|
|||
|
```python title="space_complexity_types.py"
|
|||
|
|
|||
|
```
|
|||
|
|
|||
|
![space_complexity_exponential](space_complexity.assets/space_complexity_exponential.png)
|
|||
|
|
|||
|
<p style="text-align:center"> Fig. 满二叉树下的指数阶空间复杂度 </p>
|
|||
|
|
|||
|
### 对数阶 $O(\log n)$
|
|||
|
|
|||
|
对数阶常见于分治算法、数据类型转换等。
|
|||
|
|
|||
|
例如「归并排序」,长度为 $n$ 的数组可以形成高度为 $\log n$ 的递归树,因此空间复杂度为 $O(\log n)$ 。
|
|||
|
|
|||
|
再例如「数字转化为字符串」,输入任意正整数 $n$ ,它的位数为 $\log_{10} n$ ,即对应字符串长度为 $\log_{10} n$ ,因此空间复杂度为 $O(\log_{10} n) = O(\log n)$ 。
|