237 lines
9.3 KiB
Markdown
237 lines
9.3 KiB
Markdown
|
---
|
|||
|
comments: true
|
|||
|
---
|
|||
|
|
|||
|
# 二叉搜索树
|
|||
|
|
|||
|
「二叉搜索树 Binary Search Tree」满足以下条件:
|
|||
|
|
|||
|
1. 对于根结点,左子树中所有结点的值 $<$ 根结点的值 $<$ 右子树中所有结点的值;
|
|||
|
2. 任意结点的左子树和右子树也是二叉搜索树,即也满足条件 `1.` ;
|
|||
|
|
|||
|
![binary_search_tree](binary_search_tree.assets/binary_search_tree.png)
|
|||
|
|
|||
|
## 二叉搜索树的操作
|
|||
|
|
|||
|
### 查找结点
|
|||
|
|
|||
|
给定目标结点值 `num` ,可以根据二叉搜索树的性质来查找。我们声明一个结点 `cur` ,从二叉树的根结点 `root` 出发,循环比较结点值 `cur.val` 和 `num` 之间的大小关系
|
|||
|
|
|||
|
- 若 `cur.val < val` ,说明目标结点在 `cur` 的右子树中,因此执行 `cur = cur.right` ;
|
|||
|
- 若 `cur.val > val` ,说明目标结点在 `cur` 的左子树中,因此执行 `cur = cur.left` ;
|
|||
|
- 若 `cur.val = val` ,说明找到目标结点,跳出循环并返回该结点即可;
|
|||
|
|
|||
|
=== "Step 1"
|
|||
|
|
|||
|
![bst_search_1](binary_search_tree.assets/bst_search_1.png)
|
|||
|
|
|||
|
=== "Step 2"
|
|||
|
|
|||
|
![bst_search_2](binary_search_tree.assets/bst_search_2.png)
|
|||
|
|
|||
|
=== "Step 3"
|
|||
|
|
|||
|
![bst_search_3](binary_search_tree.assets/bst_search_3.png)
|
|||
|
|
|||
|
=== "Step 4"
|
|||
|
|
|||
|
![bst_search_4](binary_search_tree.assets/bst_search_4.png)
|
|||
|
|
|||
|
二叉搜索树的查找操作和二分查找算法如出一辙,也是在每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 $O(\log n)$ 时间。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="binary_search_tree.java"
|
|||
|
/* 查找结点 */
|
|||
|
TreeNode search(int num) {
|
|||
|
TreeNode cur = root;
|
|||
|
// 循环查找,越过叶结点后跳出
|
|||
|
while (cur != null) {
|
|||
|
// 目标结点在 root 的右子树中
|
|||
|
if (cur.val < num) cur = cur.right;
|
|||
|
// 目标结点在 root 的左子树中
|
|||
|
else if (cur.val > num) cur = cur.left;
|
|||
|
// 找到目标结点,跳出循环
|
|||
|
else break;
|
|||
|
}
|
|||
|
// 返回目标结点
|
|||
|
return cur;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
### 插入结点
|
|||
|
|
|||
|
给定一个待插入元素 `num` ,为了保持二叉搜索树 “左子树 < 根结点 < 右子树” 的性质,插入操作分为两步:
|
|||
|
|
|||
|
1. **查找插入位置:** 与查找操作类似,我们从根结点出发,根据当前节点值和 `num` 的大小关系循环向下搜索,直到越过叶结点(遍历到 $\text{null}$ )时跳出循环;
|
|||
|
|
|||
|
2. **在该位置插入结点:** 初始化结点 `num` ,将该结点放到 $\text{null}$ 的位置 ;
|
|||
|
|
|||
|
二叉搜索树不允许存在重复节点,否则将会违背其定义。因此若待插入结点在树中已经存在,则不执行插入,直接返回即可。
|
|||
|
|
|||
|
![bst_insert](binary_search_tree.assets/bst_insert.png)
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="binary_search_tree.java"
|
|||
|
/* 插入结点 */
|
|||
|
TreeNode insert(int num) {
|
|||
|
// 若树为空,直接提前返回
|
|||
|
if (root == null) return null;
|
|||
|
TreeNode cur = root, pre = null;
|
|||
|
// 循环查找,越过叶结点后跳出
|
|||
|
while (cur != null) {
|
|||
|
// 找到重复结点,直接返回
|
|||
|
if (cur.val == num) return null;
|
|||
|
pre = cur;
|
|||
|
// 插入位置在 root 的右子树中
|
|||
|
if (cur.val < num) cur = cur.right;
|
|||
|
// 插入位置在 root 的左子树中
|
|||
|
else cur = cur.left;
|
|||
|
}
|
|||
|
// 插入结点 val
|
|||
|
TreeNode node = new TreeNode(num);
|
|||
|
if (pre.val < num) pre.right = node;
|
|||
|
else pre.left = node;
|
|||
|
return node;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
为了插入结点,需要借助 **辅助结点 `prev`** 保存上一轮循环的结点,这样在遍历到 $\text{null}$ 时,我们也可以获取到其父结点,从而完成结点插入操作。
|
|||
|
|
|||
|
与查找结点相同,插入结点使用 $O(\log n)$ 时间。
|
|||
|
|
|||
|
### 删除结点
|
|||
|
|
|||
|
与插入结点一样,我们需要在删除操作后维持二叉搜索树的 “左子树 < 根结点 < 右子树” 的性质。首先,我们需要在二叉树中执行查找操作,获取待删除结点。接下来,根据待删除结点的子结点数量,删除操作需要分为三种情况:
|
|||
|
|
|||
|
**待删除结点的子结点数量 $= 0$ 。** 表明待删除结点是叶结点,直接删除即可。
|
|||
|
|
|||
|
![bst_remove_case1](binary_search_tree.assets/bst_remove_case1.png)
|
|||
|
|
|||
|
**待删除结点的子结点数量 $= 1$ 。** 将待删除结点替换为其子结点。
|
|||
|
|
|||
|
![bst_remove_case2](binary_search_tree.assets/bst_remove_case2.png)
|
|||
|
|
|||
|
**待删除结点的子结点数量 $= 2$ 。** 删除操作分为三步:
|
|||
|
|
|||
|
1. 找到待删除结点在 **中序遍历序列** 中的下一个结点,记为 `nex` ;
|
|||
|
2. 在树中递归删除结点 `nex` ;
|
|||
|
3. 使用 `nex` 替换待删除结点;
|
|||
|
|
|||
|
=== "Step 1"
|
|||
|
|
|||
|
![bst_remove_case3_1](binary_search_tree.assets/bst_remove_case3_1.png)
|
|||
|
|
|||
|
=== "Step 2"
|
|||
|
|
|||
|
![bst_remove_case3_2](binary_search_tree.assets/bst_remove_case3_2.png)
|
|||
|
|
|||
|
=== "Step 3"
|
|||
|
|
|||
|
![bst_remove_case3_3](binary_search_tree.assets/bst_remove_case3_3.png)
|
|||
|
|
|||
|
=== "Step 4"
|
|||
|
|
|||
|
![bst_remove_case3_4](binary_search_tree.assets/bst_remove_case3_4.png)
|
|||
|
|
|||
|
删除结点操作也使用 $O(\log n)$ 时间,其中查找待删除结点 $O(\log n)$ ,获取中序遍历后继结点 $O(\log n)$ 。
|
|||
|
|
|||
|
=== "Java"
|
|||
|
|
|||
|
```java title="binary_search_tree.java"
|
|||
|
/* 删除结点 */
|
|||
|
TreeNode remove(int num) {
|
|||
|
// 若树为空,直接提前返回
|
|||
|
if (root == null) return null;
|
|||
|
TreeNode cur = root, pre = null;
|
|||
|
// 循环查找,越过叶结点后跳出
|
|||
|
while (cur != null) {
|
|||
|
// 找到待删除结点,跳出循环
|
|||
|
if (cur.val == num) break;
|
|||
|
pre = cur;
|
|||
|
// 待删除结点在 root 的右子树中
|
|||
|
if (cur.val < num) cur = cur.right;
|
|||
|
// 待删除结点在 root 的左子树中
|
|||
|
else cur = cur.left;
|
|||
|
}
|
|||
|
// 若无待删除结点,则直接返回
|
|||
|
if (cur == null) return null;
|
|||
|
// 子结点数量 = 0 or 1
|
|||
|
if (cur.left == null || cur.right == null) {
|
|||
|
// 当子结点数量 = 0 / 1 时, child = null / 该子结点
|
|||
|
TreeNode child = cur.left != null ? cur.left : cur.right;
|
|||
|
// 删除结点 cur
|
|||
|
if (pre.left == cur) pre.left = child;
|
|||
|
else pre.right = child;
|
|||
|
}
|
|||
|
// 子结点数量 = 2
|
|||
|
else {
|
|||
|
// 获取中序遍历中 cur 的下一个结点
|
|||
|
TreeNode nex = min(cur.right);
|
|||
|
int tmp = nex.val;
|
|||
|
// 递归删除结点 nex
|
|||
|
remove(nex.val);
|
|||
|
// 将 nex 的值复制给 cur
|
|||
|
cur.val = tmp;
|
|||
|
}
|
|||
|
return cur;
|
|||
|
}
|
|||
|
/* 获取最小结点 */
|
|||
|
TreeNode min(TreeNode root) {
|
|||
|
if (root == null) return root;
|
|||
|
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
|||
|
while (root.left != null) {
|
|||
|
root = root.left;
|
|||
|
}
|
|||
|
return root;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
## 二叉搜索树的优势
|
|||
|
|
|||
|
假设给定 $n$ 个数字,最常用的存储方式是「数组」,那么对于这串乱序的数字,常见操作的效率为:
|
|||
|
|
|||
|
- **查找元素:** 由于数组是乱序的,因此需要遍历数组来确定,使用 $O(n)$ 时间;
|
|||
|
- **插入元素:** 只需将元素添加至数组尾部即可,使用 $O(1)$ 时间;
|
|||
|
- **删除元素:** 先查找元素,使用 $O(\log n)$ 时间,再在数组中删除该元素,使用 $O(n)$ 时间;
|
|||
|
- **获取最小 / 最大元素:** 需要遍历数组来确定,使用 $O(1)$ 时间;
|
|||
|
|
|||
|
为了得到先验信息,我们也可以预先将数组元素进行排序,得到一个「排序数组」,此时操作效率为:
|
|||
|
|
|||
|
- **查找元素:** 由于数组已排序,可以使用二分查找,使用 $O(\log n)$ 时间;
|
|||
|
- **插入元素:** 为了保持数组是有序的,需插入到数组某位置,平均使用 $O(n)$ 时间;
|
|||
|
- **删除元素:** 与乱序数组中的情况相同,使用 $O(n)$ 时间;
|
|||
|
- **获取最小 / 最大元素:** 数组头部和尾部元素即是最小和最大元素,使用 $O(1)$ 时间;
|
|||
|
|
|||
|
观察发现,乱序数组和排序数组中的各类操作的时间复杂度是 “偏科” 的,即有的快有的慢;**而二叉搜索树的各项操作的时间复杂度都是对数阶,在数据量 $n$ 很大时有巨大优势**。
|
|||
|
|
|||
|
<div class="center-table" markdown>
|
|||
|
|
|||
|
| | 乱序数组 | 排序数组 | 二叉搜索树 |
|
|||
|
| ------------------- | -------- | ----------- | ----------- |
|
|||
|
| 查找指定元素 | $O(n)$ | $O(\log n)$ | $O(\log n)$ |
|
|||
|
| 插入元素 | $O(1)$ | $O(n)$ | $O(\log n)$ |
|
|||
|
| 删除元素 | $O(n)$ | $O(n)$ | $O(\log n)$ |
|
|||
|
| 获取最小 / 最大元素 | $O(n)$ | $O(1)$ | $O(\log n)$ |
|
|||
|
|
|||
|
</div>
|
|||
|
|
|||
|
## 二叉搜索树的退化
|
|||
|
|
|||
|
二叉搜索树的理想状态是「完美二叉树」,我们称这样的二叉树是 “平衡” 的,此时可以在 $\log n$ 轮循环内查找任意结点。
|
|||
|
|
|||
|
如果我们动态地在二叉搜索树中插入与删除结点,**则可能导致二叉树退化为链表**,此时各种操作的时间复杂度也退化之 $O(n)$ 。
|
|||
|
|
|||
|
!!! note
|
|||
|
|
|||
|
在实际应用中,如何保持二叉搜索树的平衡,也是一个需要重要考虑的问题。
|
|||
|
|
|||
|
![bst_degradation](binary_search_tree.assets/bst_degradation.png)
|
|||
|
|
|||
|
## 二叉搜索树常见应用
|
|||
|
|
|||
|
- 系统中的多级索引,高效查找、插入、删除操作。
|
|||
|
- 各种搜索算法的底层数据结构。
|
|||
|
- 存储数据流,保持其已排序。
|