hello-algo/docs/chapter_searching/hashing_search.md

167 lines
4.5 KiB
Markdown
Raw Normal View History

2022-11-22 09:47:26 +00:00
---
comments: true
---
# 哈希查找
!!! question
2022-11-22 09:47:26 +00:00
在数据量很大时,「线性查找」太慢;而「二分查找」要求数据必须是有序的,并且只能在数组中应用。那么是否有方法可以同时避免上述缺点呢?答案是肯定的,此方法被称为「哈希查找」。
「哈希查找 Hash Searching」借助一个哈希表来存储需要的「键值对 Key Value Pair」我们可以在 $O(1)$ 时间下实现 “键 $\rightarrow$ 值” 映射查找,体现着 “以空间换时间” 的算法思想。
## 算法实现
如果我们想要给定数组中的一个目标元素 `target` ,获取该元素的索引,那么可以借助一个哈希表实现查找。
![hash_search_index](hashing_search.assets/hash_search_index.png)
=== "Java"
```java title="hashing_search.java"
/* 哈希查找(数组) */
int hashingSearch(Map<Integer, Integer> map, int target) {
// 哈希表的 key: 目标元素value: 索引
// 若哈希表中无此 key ,返回 -1
return map.getOrDefault(target, -1);
}
```
=== "C++"
```cpp title="hashing_search.cpp"
/* 哈希查找(数组) */
int hashingSearch(unordered_map<int, int> map, int target) {
// 哈希表的 key: 目标元素value: 索引
// 若哈希表中无此 key ,返回 -1
if (map.find(target) == map.end())
return -1;
return map[target];
}
```
2022-12-02 17:31:29 +00:00
=== "Python"
```python title="hashing_search.py"
""" 哈希查找(数组) """
def hashing_search(mapp, target):
# 哈希表的 key: 目标元素value: 索引
# 若哈希表中无此 key ,返回 -1
return mapp.get(target, -1)
2022-12-02 17:31:29 +00:00
```
=== "Go"
```go title="hashing_search.go"
```
=== "JavaScript"
```js title="hashing_search.js"
```
=== "TypeScript"
```typescript title="hashing_search.ts"
```
=== "C"
```c title="hashing_search.c"
```
=== "C#"
```csharp title="hashing_search.cs"
```
2022-11-22 09:47:26 +00:00
再比如,如果我们想要给定一个目标结点值 `target` ,获取对应的链表结点对象,那么也可以使用哈希查找实现。
![hash_search_listnode](hashing_search.assets/hash_search_listnode.png)
=== "Java"
```java title="hashing_search.java"
/* 哈希查找(链表) */
ListNode hashingSearch1(Map<Integer, ListNode> map, int target) {
// 哈希表的 key: 目标结点值value: 结点对象
// 若哈希表中无此 key ,返回 null
2022-11-22 09:47:26 +00:00
return map.getOrDefault(target, null);
}
```
=== "C++"
```cpp title="hashing_search.cpp"
/* 哈希查找(链表) */
ListNode* hashingSearch1(unordered_map<int, ListNode*> map, int target) {
// 哈希表的 key: 目标结点值value: 结点对象
// 若哈希表中无此 key ,返回 nullptr
if (map.find(target) == map.end())
return nullptr;
return map[target];
}
```
2022-12-02 17:31:29 +00:00
=== "Python"
```python title="hashing_search.py"
""" 哈希查找(链表) """
def hashing_search1(mapp, target):
# 哈希表的 key: 目标元素value: 结点对象
# 若哈希表中无此 key ,返回 -1
return mapp.get(target, -1)
2022-12-02 17:31:29 +00:00
```
=== "Go"
```go title="hashing_search.go"
```
=== "JavaScript"
```js title="hashing_search.js"
```
=== "TypeScript"
```typescript title="hashing_search.ts"
```
=== "C"
```c title="hashing_search.c"
```
=== "C#"
```csharp title="hashing_search.cs"
```
2022-11-22 09:47:26 +00:00
## 复杂度分析
**时间复杂度:** $O(1)$ ,哈希表的查找操作使用 $O(1)$ 时间。
**空间复杂度:** $O(n)$ ,其中 $n$ 为数组或链表长度。
## 优缺点
在哈希表中,**查找、插入、删除操作的平均时间复杂度都为 $O(1)$** ,这意味着无论是高频增删还是高频查找场景,哈希查找的性能表现都非常好。当然,一切的前提是保证哈希表未退化。
即使如此,哈希查找仍存在一些问题,在实际应用中,需要根据情况灵活选择方法。
- 辅助哈希表 **需要使用 $O(n)$ 的额外空间**,意味着需要预留更多的计算机内存;
- 建立和维护哈希表需要时间,因此哈希查找 **不适合高频增删、低频查找的使用场景**
- 当哈希冲突严重时,哈希表会退化为链表,**时间复杂度劣化至 $O(n)$**
- **当数据量很小时,线性查找比哈希查找更快**。这是因为计算哈希映射函数可能比遍历一个小型数组更慢;