Add merge sort, and sorting algorithm.
This commit is contained in:
@@ -6,31 +6,59 @@ comments: true
|
||||
|
||||
「归并排序 Merge Sort」是算法中 “分治思想” 的典型体现,其有「划分」和「合并」两个阶段:
|
||||
|
||||
1. **划分:** 不断递归地 **将数组从中点位置划分开**,将长数组的排序问题转化为短数组的排序问题;
|
||||
1. **划分阶段:** 通过递归不断 **将数组从中点位置划分开**,将长数组的排序问题转化为短数组的排序问题;
|
||||
|
||||
2. **合并:** 划分到子数组长度为 1 时,开始向上合并,不断将 **左 / 右两个短排序数组** 合并为 **一个长排序数组**,直至合并至原数组时完成排序;
|
||||
2. **合并阶段:** 划分到子数组长度为 1 时,开始向上合并,不断将 **左、右两个短排序数组** 合并为 **一个长排序数组**,直至合并至原数组时完成排序;
|
||||
|
||||
(图)
|
||||

|
||||
|
||||
<p align="center"> Fig. 归并排序两阶段:划分与合并 </p>
|
||||
|
||||
## 算法流程
|
||||
|
||||
**递归划分:** 从顶至底递归地 **将数组从中点切为两个子数组** ,直至长度为 1 ;
|
||||
**「递归划分」** 从顶至底递归地 **将数组从中点切为两个子数组** ,直至长度为 1 ;
|
||||
|
||||
1. 计算数组中点 `mid` ,递归划分左子数组(区间 `[left, mid]` )和右子数组(区间 `[mid + 1, right]` );
|
||||
2. 递归执行 `1.` 步骤,直至子数组区间长度为 1 时,终止递归划分;
|
||||
|
||||
**回溯合并:** 从底至顶将左子数组和右子数组合并为一个 **有序数组** ;由于是从长度为 1 的子数组开始合并的,因此 **每个子数组也是有序的** ,因此合并任务本质是要 **将两个有序子数组合并为一个有序数组** ;
|
||||
**「回溯合并」** 从底至顶地将左子数组和右子数组合并为一个 **有序数组** ;
|
||||
|
||||
1. 初始化一个辅助数组 `tmp` 暂存待合并区间 `[left, right]` 内的元素,后序通过覆盖原数组 `nums` 的元素来实现合并;
|
||||
2. 初始化指针 `i` , `j` , `k` 分别指向左子数组、右子数组、原数组的首元素;
|
||||
3. 循环判断 `tmp[i]` 和 `tmp[j]` 的大小,将较小的先覆盖至 `nums[k]` ,指针 `i` , `j` 根据判断结果交替前进(指针 `k` 也前进),直至两个子数组都遍历完,即可完成合并。
|
||||
需要注意,由于从长度为 1 的子数组开始合并,所以 **每个子数组都是有序的** 。因此,合并任务本质是要 **将两个有序子数组合并为一个有序数组** 。
|
||||
|
||||
合并代码的实现主要难点:
|
||||
=== "Step1"
|
||||

|
||||
|
||||
- **`nums` 的待合并区间为 `[left, right]`** ,而由于 `tmp` 只复制了 `nums` 该区间元素,因此 **`tmp` 对应区间为 `[0, right - left]`** 。以下代码中的 `leftStart` , `leftEnd` , `rightStart` , `rightEnd` , `i` , `j` 都是根据 `tmp` 定义的,而 `k` 是根据 `nums` 定义的。
|
||||
- 判断 `tmp[i]` 和 `tmp[j]` 的大小的操作中,还 **需考虑当子数组遍历完成后的索引越界问题**,即 `i > leftEnd` 和 `j > rightEnd` 的情况,索引越界的优先级是最高的,例如如果左子数组已经被合并完了,那么不用继续判断,直接合并右子数组元素即可。
|
||||
=== "Step2"
|
||||

|
||||
|
||||
(动画)
|
||||
=== "Step3"
|
||||

|
||||
|
||||
=== "Step4"
|
||||

|
||||
|
||||
=== "Step5"
|
||||

|
||||
|
||||
=== "Step6"
|
||||

|
||||
|
||||
=== "Step7"
|
||||

|
||||
|
||||
=== "Step8"
|
||||

|
||||
|
||||
=== "Step9"
|
||||

|
||||
|
||||
=== "Step10"
|
||||

|
||||
|
||||
观察发现,归并排序的递归顺序就是二叉树的「后序遍历」。
|
||||
|
||||
- **后序遍历:** 先递归左子树、再递归右子树、最后处理根结点。
|
||||
- **归并排序:** 先递归左子树、再递归右子树、最后处理合并。
|
||||
|
||||
=== "Java"
|
||||
|
||||
@@ -41,10 +69,14 @@ comments: true
|
||||
* 右子数组区间 [mid + 1, right]
|
||||
*/
|
||||
void merge(int[] nums, int left, int mid, int right) {
|
||||
int[] tmp = Arrays.copyOfRange(nums, left, right + 1); // 初始化辅助数组
|
||||
int leftStart = left - left, leftEnd = mid - left, // 左子数组的起始索引和结束索引
|
||||
rightStart = mid + 1 - left, rightEnd = right - left; // 右子数组的起始索引和结束索引
|
||||
int i = leftStart, j = rightStart; // i,j 分别指向左子数组、右子数组的首元素
|
||||
// 初始化辅助数组
|
||||
int[] tmp = Arrays.copyOfRange(nums, left, right + 1);
|
||||
// 左子数组的起始索引和结束索引
|
||||
int leftStart = left - left, leftEnd = mid - left;
|
||||
// 右子数组的起始索引和结束索引
|
||||
int rightStart = mid + 1 - left, rightEnd = right - left;
|
||||
// i, j 分别指向左子数组、右子数组的首元素
|
||||
int i = leftStart, j = rightStart;
|
||||
// 通过覆盖原数组 nums 来合并左子数组和右子数组
|
||||
for (int k = left; k <= right; k++) {
|
||||
// 若 “左子数组已全部合并完”,则选取右子数组元素,并且 j++
|
||||
@@ -72,6 +104,17 @@ comments: true
|
||||
}
|
||||
```
|
||||
|
||||
下面重点解释一下合并方法 `merge()` 的流程:
|
||||
|
||||
1. 初始化一个辅助数组 `tmp` 暂存待合并区间 `[left, right]` 内的元素,后续通过覆盖原数组 `nums` 的元素来实现合并;
|
||||
2. 初始化指针 `i` , `j` , `k` 分别指向左子数组、右子数组、原数组的首元素;
|
||||
3. 循环判断 `tmp[i]` 和 `tmp[j]` 的大小,将较小的先覆盖至 `nums[k]` ,指针 `i` , `j` 根据判断结果交替前进(指针 `k` 也前进),直至两个子数组都遍历完,即可完成合并。
|
||||
|
||||
合并方法 `merge()` 代码中的主要难点:
|
||||
|
||||
- `nums` 的待合并区间为 `[left, right]` ,而因为 `tmp` 只复制了 `nums` 该区间元素,所以 `tmp` 对应区间为 `[0, right - left]` ,**需要特别注意代码中各个变量的含义**。
|
||||
- 判断 `tmp[i]` 和 `tmp[j]` 的大小的操作中,还 **需考虑当子数组遍历完成后的索引越界问题**,即 `i > leftEnd` 和 `j > rightEnd` 的情况,索引越界的优先级是最高的,例如如果左子数组已经被合并完了,那么不用继续判断,直接合并右子数组元素即可。
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度 $O(n \log n)$ :** 划分形成高度为 $\log n$ 的递归树,每层合并的总操作数量为 $n$ ,总体使用 $O(n \log n)$ 时间。
|
||||
@@ -87,7 +130,4 @@ comments: true
|
||||
- 由于链表可仅通过改变指针来实现结点增删,因此 “将两个短有序链表合并为一个长有序链表” 无需使用额外空间,即回溯合并阶段不用像排序数组一样建立辅助数组 `tmp` ;
|
||||
- 通过使用「迭代」代替「递归划分」,可省去递归使用的栈帧空间;
|
||||
|
||||
!!! quote
|
||||
|
||||
详情参考:[148. 排序链表](https://leetcode-cn.com/problems/sort-list/solution/sort-list-gui-bing-pai-xu-lian-biao-by-jyd/)
|
||||
|
||||
> 详情参考:[<u>148. 排序链表</u>](https://leetcode-cn.com/problems/sort-list/solution/sort-list-gui-bing-pai-xu-lian-biao-by-jyd/)
|
||||
|
Reference in New Issue
Block a user