diff --git a/docs/chapter_computational_complexity/performance_evaluation.md b/docs/chapter_computational_complexity/performance_evaluation.md index 84c3dc8..45031b2 100644 --- a/docs/chapter_computational_complexity/performance_evaluation.md +++ b/docs/chapter_computational_complexity/performance_evaluation.md @@ -30,7 +30,7 @@ comments: true ### 理论估算 -既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐进复杂度分析 Asymptotic Complexity Analysis」。 +既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。 **复杂度分析评估随着输入数据量的增长,算法的运行时间和占用空间的增长趋势** 。根据时间和空间两方面,复杂度可分为「时间复杂度 Time Complexity」和「空间复杂度 Space Complexity」。 diff --git a/docs/chapter_computational_complexity/summary.md b/docs/chapter_computational_complexity/summary.md index 6550e77..7e76d2c 100644 --- a/docs/chapter_computational_complexity/summary.md +++ b/docs/chapter_computational_complexity/summary.md @@ -13,8 +13,8 @@ comments: true ### 时间复杂度 - 「时间复杂度」统计算法运行时间随着数据量变大时的增长趋势,可以有效评估算法效率,但在某些情况下可能失效,比如在输入数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣性。 -- 「最差时间复杂度」使用大 $O$ 符号表示,即函数渐进上界,其反映当 $n$ 趋于正无穷时,$T(n)$ 处于何种增长级别。 -- 推算时间复杂度分为两步,首先统计计算操作数量,再判断渐进上界。 +- 「最差时间复杂度」使用大 $O$ 符号表示,即函数渐近上界,其反映当 $n$ 趋于正无穷时,$T(n)$ 处于何种增长级别。 +- 推算时间复杂度分为两步,首先统计计算操作数量,再判断渐近上界。 - 常见时间复杂度从小到大排列有 $O(1)$ , $O(\log n)$ , $O(n)$ , $O(n \log n)$ , $O(n^2)$ , $O(2^n)$ , $O(n!)$ 。 - 某些算法的时间复杂度不是恒定的,而是与输入数据的分布有关。时间复杂度分为「最差时间复杂度」和「最佳时间复杂度」,后者几乎不用,因为输入数据需要满足苛刻的条件才能达到最佳情况。 - 「平均时间复杂度」可以反映在随机数据输入下的算法效率,最贴合实际使用情况下的算法性能。计算平均时间复杂度需要统计输入数据的分布,以及综合后的数学期望。 diff --git a/docs/chapter_computational_complexity/time_complexity.md b/docs/chapter_computational_complexity/time_complexity.md index 9ee13d8..ab55268 100644 --- a/docs/chapter_computational_complexity/time_complexity.md +++ b/docs/chapter_computational_complexity/time_complexity.md @@ -203,7 +203,7 @@ $$ **时间复杂度也存在一定的局限性。** 比如,虽然算法 `A` 和 `C` 的时间复杂度相同,但是实际的运行时间有非常大的差别。再比如,虽然算法 `B` 比 `C` 的时间复杂度要更高,但在输入数据大小 $n$ 比较小时,算法 `B` 是要明显优于算法 `C` 的。即使存在这些问题,计算复杂度仍然是评判算法效率的最有效、最常用方法。 -## 函数渐进上界 +## 函数渐近上界 设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为 @@ -284,34 +284,34 @@ $$ $T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。 -我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」,代表函数 $T(n)$ 的「渐进上界 asymptotic upper bound」。 +我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」,代表函数 $T(n)$ 的「渐近上界 asymptotic upper bound」。 -我们要推算时间复杂度,本质上是在计算「操作数量函数 $T(n)$ 」的渐进上界。下面我们先来看看函数渐进上界的数学定义。 +我们要推算时间复杂度,本质上是在计算「操作数量函数 $T(n)$ 」的渐近上界。下面我们先来看看函数渐近上界的数学定义。 -!!! abstract "函数渐进上界" +!!! abstract "函数渐近上界" 若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有 $$ T(n) \leq c \cdot f(n) $$ - 则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐进上界,记为 + 则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐近上界,记为 $$ T(n) = O(f(n)) $$ ![asymptotic_upper_bound](time_complexity.assets/asymptotic_upper_bound.png) -
Fig. 函数的渐进上界
+Fig. 函数的渐近上界
-本质上看,计算渐进上界就是在找一个函数 $f(n)$ ,**使得在 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别(仅相差一个常数项 $c$ 的倍数)**。 +本质上看,计算渐近上界就是在找一个函数 $f(n)$ ,**使得在 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别(仅相差一个常数项 $c$ 的倍数)**。 !!! tip - 渐进上界的数学味儿有点重,如果你感觉没有完全理解,无需担心,因为在实际使用中我们只需要会推算即可,数学意义可以慢慢领悟。 + 渐近上界的数学味儿有点重,如果你感觉没有完全理解,无需担心,因为在实际使用中我们只需要会推算即可,数学意义可以慢慢领悟。 ## 推算方法 -推算出 $f(n)$ 后,我们就得到时间复杂度 $O(f(n))$ 。那么,如何来确定渐进上界 $f(n)$ 呢?总体分为两步,首先「统计操作数量」,然后「判断渐进上界」。 +推算出 $f(n)$ 后,我们就得到时间复杂度 $O(f(n))$ 。那么,如何来确定渐近上界 $f(n)$ 呢?总体分为两步,首先「统计操作数量」,然后「判断渐近上界」。 ### 1. 统计操作数量 @@ -416,7 +416,7 @@ $$ ``` -### 2. 判断渐进上界 +### 2. 判断渐近上界 **时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将处于主导作用,其它项的影响都可以被忽略。 @@ -1330,7 +1330,7 @@ $$ - 当 `nums = [?, ?, ..., 1]`,即当末尾元素是 $1$ 时,则需完整遍历数组,此时达到 **最差时间复杂度 $O(n)$** ; - 当 `nums = [1, ?, ?, ...]` ,即当首个数字为 $1$ 时,无论数组多长都不需要继续遍历,此时达到 **最佳时间复杂度 $\Omega(1)$** ; -「函数渐进上界」使用大 $O$ 记号表示,代表「最差时间复杂度」。与之对应,「函数渐进下界」用 $\Omega$ 记号(Omega Notation)来表示,代表「最佳时间复杂度」。 +「函数渐近上界」使用大 $O$ 记号表示,代表「最差时间复杂度」。与之对应,「函数渐近下界」用 $\Omega$ 记号(Omega Notation)来表示,代表「最佳时间复杂度」。 === "Java" diff --git a/docs/chapter_preface/index.md b/docs/chapter_preface/index.md index 0defc4a..896f6e0 100644 --- a/docs/chapter_preface/index.md +++ b/docs/chapter_preface/index.md @@ -44,7 +44,7 @@ comments: true 首先介绍数据结构与算法的评价维度、算法效率的评估方法,引出了计算复杂度概念。 -接下来,从 **函数渐进上界** 入手,分别介绍了 **时间复杂度** 和 **空间复杂度** ,包括推算方法、常见类型、示例等。同时,剖析了 **最差、最佳、平均** 时间复杂度的联系与区别。 +接下来,从 **函数渐近上界** 入手,分别介绍了 **时间复杂度** 和 **空间复杂度** ,包括推算方法、常见类型、示例等。同时,剖析了 **最差、最佳、平均** 时间复杂度的联系与区别。 ### 数据结构