Update docs for deployment on Vercel.

This commit is contained in:
krahets
2022-11-22 17:47:26 +08:00
parent eec011d595
commit 33d79ea6da
124 changed files with 3964 additions and 4 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

View File

@@ -0,0 +1,154 @@
---
comments: true
---
# 二分查找
「二分查找 Binary Search」利用数据的有序性通过每轮缩小一半搜索区间来查找目标元素。
使用二分查找有两个前置条件:
- **要求输入数据是有序的**,这样才能通过判断大小关系来排除一半的搜索区间;
- **二分查找仅适用于数组** ,而在链表中使用效率很低,因为其在循环中需要跳跃式(非连续地)访问元素。
## 算法实现
给定一个长度为 $n$ 的排序数组 `nums` ,元素从小到大排列。数组的索引取值范围为
$$
0, 1, 2, \cdots, n-1
$$
使用「区间」来表示这个取值范围的方法主要有两种:
1. **双闭区间 $[0, n-1]$** ,即两个边界都包含自身;此方法下,区间 $[0, 0]$ 仍包含一个元素;
2. **左闭右开 $[0, n)$** ,即左边界包含自身、右边界不包含自身;此方法下,区间 $[0, 0)$ 为空;
### “双闭区间” 实现
首先,我们先采用 “双闭区间” 的表示,在数组 `nums` 中查找目标元素 `target` 的对应索引。
=== "Step 1"
![binary_search_step1](binary_search.assets/binary_search_step1.png)
=== "Step 2"
![binary_search_step2](binary_search.assets/binary_search_step2.png)
=== "Step 3"
![binary_search_step3](binary_search.assets/binary_search_step3.png)
=== "Step 4"
![binary_search_step4](binary_search.assets/binary_search_step4.png)
=== "Step 5"
![binary_search_step5](binary_search.assets/binary_search_step5.png)
=== "Step 6"
![binary_search_step6](binary_search.assets/binary_search_step6.png)
=== "Step 7"
![binary_search_step7](binary_search.assets/binary_search_step7.png)
二分查找 “双闭区间” 表示下的代码如下所示。
=== "Java"
```java title="binary_search.java"
/* 二分查找(双闭区间) */
int binarySearch(int[] nums, int target) {
// 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素
int i = 0, j = nums.length - 1;
// 循环,当搜索区间为空时跳出(当 i > j 时为空)
while (i <= j) {
int m = (i + j) / 2; // 计算中点索引 m
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中
i = m + 1;
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中
j = m - 1;
else // 找到目标元素,返回其索引
return m;
}
// 未找到目标元素,返回 -1
return -1;
}
```
### “左闭右开” 实现
当然,我们也可以使用 “左闭右开” 的表示方法,写出相同功能的二分查找代码。
=== "Java"
```java title="binary_search.java"
/* 二分查找(左闭右开) */
int binarySearch1(int[] nums, int target) {
// 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1
int i = 0, j = nums.length;
// 循环,当搜索区间为空时跳出(当 i = j 时为空)
while (i < j) {
int m = (i + j) / 2; // 计算中点索引 m
if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中
i = m + 1;
else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中
j = m;
else // 找到目标元素,返回其索引
return m;
}
// 未找到目标元素,返回 -1
return -1;
}
```
### 两种表示对比
对比下来,两种表示的代码写法有以下不同点:
<div class="center-table" markdown>
| 表示方法 | 初始化指针 | 缩小区间 | 循环终止条件 |
| ------------------- | ------------------- | ------------------------- | ------------ |
| 双闭区间 $[0, n-1]$ | $i = 0$ , $j = n-1$ | $i = m + 1$ , $j = m - 1$ | $i > j$ |
| 左闭右开 $[0, n)$ | $i = 0$ , $j = n$ | $i = m + 1$ , $j = m$ | $i = j$ |
</div>
观察发现,在 “双闭区间” 表示中,由于对左右两边界的定义是相同的,因此缩小区间的 $i$ , $j$ 处理方法也是对称的,这样更不容易出错。综上所述,**建议你采用 “双闭区间” 的写法。**
### 大数越界处理
当数组长度很大时,加法 $i + j$ 的结果有可能会超出 `int` 类型的取值范围。在此情况下,我们需要换一种计算中点的写法。
```java
// (i + j) 有可能超出 int 的取值范围
int m = (i + j) / 2;
// 更换为此写法则不会越界
int m = i + (j - i) / 2;
```
## 复杂度分析
**时间复杂度 $O(\log n)$ ** 其中 $n$ 为数组或链表长度;每轮排除一半的区间,因此循环轮数为 $\log_2 n$ ,使用 $O(\log n)$ 时间。
**空间复杂度 $O(1)$ ** 指针 `i` , `j` 使用常数大小空间。
## 优缺点
二分查找效率很高,体现在:
- **二分查找时间复杂度低。** 对数阶在数据量很大时具有巨大优势,例如,当数据大小 $n = 2^{20}$ 时,线性查找需要 $2^{20} = 1048576$ 轮循环,而二分查找仅需要 $\log_2 2^{20} = 20$ 轮循环。
- **二分查找不需要额外空间。** 相对于借助额外数据结构来实现查找的算法来说,其更加节约空间使用。
但并不意味着所有情况下都应使用二分查找,这是因为:
- **二分查找仅适用于有序数据。** 如果输入数据是乱序的,为了使用二分查找而专门执行数据排序,那么是得不偿失的,因为排序算法的时间复杂度一般为 $O(n \log n)$ ,比线性查找和二分查找都更差。再例如,对于频繁插入元素的场景,为了保持数组的有序性,需要将元素插入到特定位置,时间复杂度为 $O(n)$ ,也是非常昂贵的。
- **二分查找仅适用于数组。** 由于在二分查找中,访问索引是 ”非连续“ 的,因此链表或者基于链表实现的数据结构都无法使用。
- **在小数据量下,线性查找的性能更好。** 在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,在数据量 $n$ 较小时,线性查找反而比二分查找更快。

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

View File

@@ -0,0 +1,60 @@
---
comments: true
---
# 哈希查找
!!! question
在数据量很大时,「线性查找」太慢;而「二分查找」要求数据必须是有序的,并且只能在数组中应用。那么是否有方法可以同时避免上述缺点呢?答案是肯定的,此方法被称为「哈希查找」。
「哈希查找 Hash Searching」借助一个哈希表来存储需要的「键值对 Key Value Pair」我们可以在 $O(1)$ 时间下实现 “键 $\rightarrow$ 值” 映射查找,体现着 “以空间换时间” 的算法思想。
## 算法实现
如果我们想要给定数组中的一个目标元素 `target` ,获取该元素的索引,那么可以借助一个哈希表实现查找。
![hash_search_index](hashing_search.assets/hash_search_index.png)
=== "Java"
```java title="hashing_search.java"
/* 哈希查找(数组) */
int hashingSearch(Map<Integer, Integer> map, int target) {
// 哈希表的 key: 目标元素value: 索引
// 若哈希表中无此 key ,返回 -1
return map.getOrDefault(target, -1);
}
```
再比如,如果我们想要给定一个目标结点值 `target` ,获取对应的链表结点对象,那么也可以使用哈希查找实现。
![hash_search_listnode](hashing_search.assets/hash_search_listnode.png)
=== "Java"
```java title="hashing_search.java"
/* 哈希查找(链表) */
ListNode hashingSearch1(Map<Integer, ListNode> map, int target) {
// 哈希表的 key: 目标结点值value: 结点对象
// 若哈希表中无此 key ,返回 -1
return map.getOrDefault(target, null);
}
```
## 复杂度分析
**时间复杂度:** $O(1)$ ,哈希表的查找操作使用 $O(1)$ 时间。
**空间复杂度:** $O(n)$ ,其中 $n$ 为数组或链表长度。
## 优缺点
在哈希表中,**查找、插入、删除操作的平均时间复杂度都为 $O(1)$** ,这意味着无论是高频增删还是高频查找场景,哈希查找的性能表现都非常好。当然,一切的前提是保证哈希表未退化。
即使如此,哈希查找仍存在一些问题,在实际应用中,需要根据情况灵活选择方法。
- 辅助哈希表 **需要使用 $O(n)$ 的额外空间**,意味着需要预留更多的计算机内存;
- 建立和维护哈希表需要时间,因此哈希查找 **不适合高频增删、低频查找的使用场景**
- 当哈希冲突严重时,哈希表会退化为链表,**时间复杂度劣化至 $O(n)$**
- **当数据量很小时,线性查找比哈希查找更快**。这是因为计算哈希映射函数可能比遍历一个小型数组更慢;

Binary file not shown.

After

Width:  |  Height:  |  Size: 75 KiB

View File

@@ -0,0 +1,60 @@
---
comments: true
---
# 线性查找
「线性查找 Linear Search」是一种最基础的查找方法其从数据结构的一端开始依次访问每个元素直到另一端后停止。
## 算法实现
线性查找实质上就是遍历数据结构 + 判断条件。比如,我们想要在数组 `nums` 中查找目标元素 `target` 的对应索引,那么可以在数组中进行线性查找。
![linear_search](linear_search.assets/linear_search.png)
=== "Java"
```java title="linear_search.java"
/* 线性查找(数组) */
int linearSearch(int[] nums, int target) {
// 遍历数组
for (int i = 0; i < nums.length; i++) {
// 找到目标元素,返回其索引
if (nums[i] == target)
return i;
}
// 未找到目标元素,返回 -1
return -1;
}
```
再比如,我们想要在给定一个目标结点值 `target` ,返回此结点对象,也可以在链表中进行线性查找。
=== "Java"
```java title="linear_search.java"
/* 线性查找(链表) */
ListNode linearSearch(ListNode head, int target) {
// 遍历链表
while (head != null) {
// 找到目标结点,返回之
if (head.val == target)
return head;
head = head.next;
}
// 未找到目标结点,返回 null
return null;
}
```
## 复杂度分析
**时间复杂度 $O(n)$ ** 其中 $n$ 为数组或链表长度。
**空间复杂度 $O(1)$ ** 无需使用额外空间。
## 优缺点
**线性查找的通用性极佳。** 由于线性查找是依次访问元素的,即没有跳跃访问元素,因此数组或链表皆适用。
**线性查找的时间复杂度太高。** 在数据量 $n$ 很大时,查找效率很低。

View File

@@ -0,0 +1,19 @@
# 小结
- 线性查找是一种最基础的查找方法,通过遍历数据结构 + 判断条件实现查找。
- 二分查找利用数据的有序性,通过循环不断缩小一半搜索区间来实现查找,其要求输入数据是有序的,并且仅适用于数组或基于数组实现的数据结构。
- 哈希查找借助哈希表来实现常数阶时间复杂度的查找操作,体现以空间换时间的算法思想。
<p style="text-align:center"> Table. 三种查找方法对比 </p>
<div class="center-table" markdown>
| | 线性查找 | 二分查找 | 哈希查找 |
| ------------------------------------- | ------------------------ | ----------------------------- | ------------------------ |
| 适用数据结构 | 数组、链表 | 数组 | 数组、链表 |
| 输入数据要求 | 无 | 有序 | 无 |
| 平均时间复杂度</br>查找 / 插入 / 删除 | $O(n)$ / $O(1)$ / $O(n)$ | $O(\log n)$ / $O(n)$ / $O(n)$ | $O(1)$ / $O(1)$ / $O(1)$ |
| 最差时间复杂度</br>查找 / 插入 / 删除 | $O(n)$ / $O(1)$ / $O(n)$ | $O(\log n)$ / $O(n)$ / $O(n)$ | $O(n)$ / $O(n)$ / $O(n)$ |
| 空间复杂度 | $O(1)$ | $O(1)$ | $O(n)$ |
</div>