Update docs for deployment on Vercel.

This commit is contained in:
krahets
2022-11-22 17:47:26 +08:00
parent eec011d595
commit 33d79ea6da
124 changed files with 3964 additions and 4 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 42 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

View File

@@ -0,0 +1,114 @@
---
comments: true
---
# 冒泡排序
「冒泡排序 Bubble Sort」是一种最基础的排序算法非常适合作为第一个学习的排序算法。顾名思义「冒泡」是该算法的核心操作。
!!! tip "为什么叫 “冒泡”"
在水中,越大的泡泡浮力越大,所以最大的泡泡会最先浮到水面。
「冒泡」操作则是在模拟上述过程,具体做法为:从数组最左端开始向右遍历,依次对比相邻元素大小,若 **左元素 > 右元素** 则将它俩交换,最终可将最大元素移动至数组最右端。
完成此次冒泡操作后,**数组最大元素已在正确位置,接下来只需排序剩余 $n - 1$ 个元素**。
=== "Step 1"
![bubble_operation_step1](bubble_sort.assets/bubble_operation_step1.png)
=== "Step 2"
![bubble_operation_step2](bubble_sort.assets/bubble_operation_step2.png)
=== "Step 3"
![bubble_operation_step3](bubble_sort.assets/bubble_operation_step3.png)
=== "Step 4"
![bubble_operation_step4](bubble_sort.assets/bubble_operation_step4.png)
=== "Step 5"
![bubble_operation_step5](bubble_sort.assets/bubble_operation_step5.png)
=== "Step 6"
![bubble_operation_step6](bubble_sort.assets/bubble_operation_step6.png)
=== "Step 7"
![bubble_operation_step7](bubble_sort.assets/bubble_operation_step7.png)
## 算法流程
设数组长度为 $n$ ,完成第一轮「冒泡」后,数组最大元素已在正确位置,接下来只需排序剩余 $n - 1$ 个元素。
同理,对剩余 $n - 1$ 个元素执行「冒泡」,可将第二大元素交换至正确位置,因而待排序元素只剩 $n - 2$ 个。
以此类推…… **循环 $n - 1$ 轮「冒泡」,即可完成整个数组的排序**
![bubble_sort](bubble_sort.assets/bubble_sort.png)
=== "Java"
```java
/* 冒泡排序 */
void bubbleSort(int[] nums) {
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for (int i = nums.length - 1; i > 0; i--) {
// 内循环:冒泡操作
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
}
}
}
}
```
## 算法分析
**时间复杂度 $O(n^2)$ ** 各轮「冒泡」遍历的数组长度为 $n - 1$ , $n - 2$ , $\cdots$ , $2$ , $1$ 次,求和为 $\frac{(n - 1) n}{2}$ ,因此使用 $O(n^2)$ 时间。
**空间复杂度 $O(1)$ ** 指针 $i$ , $j$ 使用常数大小的额外空间。
**原地性:** 指针变量仅使用常数大小额外空间,因此是 **原地排序** 。
**稳定性:** 不交换相等元素,因此是 **稳定排序** 。
**自适应:** 引入 `flag` 优化后(见下文),可在输入数组已排序下达到最优时间复杂度 $O(N)$ ,因此是 **自适应排序** 。
## 效率优化
我们发现,若在某轮「冒泡」中未执行任何交换操作,则说明数组已经完成排序,可直接返回结果。考虑可以增加一个标志位 `flag` 来监听该情况,若出现则直接返回。
优化后,冒泡排序的最差和平均时间复杂度仍为 $O(n^2)$ ;而在输入数组 **已排序** 时,达到 **最佳时间复杂度** $O(n)$ 。
=== "Java"
```java
/* 冒泡排序(标志优化)*/
void bubbleSortWithFlag(int[] nums) {
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
for (int i = nums.length - 1; i > 0; i--) {
boolean flag = false; // 初始化标志位
// 内循环:冒泡操作
for (int j = 0; j < i; j++) {
if (nums[j] > nums[j + 1]) {
// 交换 nums[j] 与 nums[j + 1]
int tmp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = tmp;
flag = true; // 记录交换元素
}
}
if (!flag) break; // 此轮冒泡未交换任何元素,直接跳出
}
}
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

View File

@@ -0,0 +1,71 @@
---
comments: true
---
# 插入排序
顾名思义,「插入排序 Insertion Sort」是一种基于 **数组插入操作** 的排序算法。
「插入操作」思想:选定数组的某个元素 `base` ,将 `base` 与其左边的元素依次对比大小,并 “插入” 到正确位置。
然而,由于数组元素是连续的,因此我们无法直接把 `base` 插入到目标位置,而是需要把从正确位置到 `base` 之间的所有元素向右移动一位。
![insertion_operation](insertion_sort.assets/insertion_operation.png)
## 算法流程
第 1 轮先选取数组的 **第 2 个元素**`base` ,执行「插入操作」后, **数组前 2 个元素已完成排序**
第 2 轮选取 **第 3 个元素**`base` ,执行「插入操作」后, **数组前 3 个元素已完成排序**
以此类推……最后一轮选取 **数组尾元素**`base` ,执行「插入操作」后 **所有元素已完成排序**
![insertion_sort](insertion_sort.assets/insertion_sort.png)
=== "Java"
```java
/* 插入排序 */
void insertionSort(int[] nums) {
// 外循环base = nums[1], nums[2], ..., nums[n-1]
for (int i = 1; i < nums.length; i++) {
int base = nums[i], j = i - 1;
// 内循环:将 base 插入到左边的正确位置
while (j >= 0 && nums[j] > base) {
nums[j + 1] = nums[j]; // 1. 将 nums[j] 向右移动一位
j--;
}
nums[j + 1] = base; // 2. 将 base 赋值到正确位置
}
}
```
## 算法分析
**时间复杂度 $O(n^2)$ ** 各轮插入操作最多循环 $n - 1$ , $n-2$ , $\cdots$ , $2$ , $1$ 次,求和为 $\frac{(n - 1) n}{2}$ ,使用 $O(n^2)$ 时间。
**空间复杂度 $O(1)$ ** 指针 $i$ , $j$ 使用常数大小的额外空间。
**原地性:** 指针变量仅使用常数大小额外空间,因此是 **原地排序**
**稳定性:** 不交换相等元素,因此是 **稳定排序**
**自适应:** 当输入数组完全有序时,每次插入操作(即内循环)仅循环一次,此时时间复杂度为 $O(n)$ 。
## 插入排序 vs 冒泡排序
!!! question
虽然「插入排序」和「冒泡排序」的时间复杂度皆为 $O(n^2)$ ,但实际运行速度却有很大差别,这是为什么呢?
回顾复杂度分析,两个方法的循环次数都是 $\frac{(n - 1) n}{2}$ 。但不同的是,「冒泡操作」是在做 **元素交换** ,需要借助一个临时变量实现,共 3 个单元操作;而「插入操作」是在做 **赋值** ,只需 1 个单元操作;因此,可以粗略估计出冒泡排序的计算开销约为插入排序的 3 倍。
插入排序运行速度快,并且具有原地、稳定、自适应的优点,因此很受欢迎。实际上,包括 Java 在内的许多编程语言的排序库函数的实现都用到了插入排序。库函数的大致思路:
- 对于 **长数组**,采用基于分治的排序算法,例如「快速排序」,时间复杂度为 $O(n \log n)$
- 对于 **短数组**,直接使用「插入排序」,时间复杂度为 $O(n^2)$
在数组较短时,复杂度中的常数项(即每轮中的单元操作数量)占主导作用,此时插入排序运行地更快。这个现象与「线性查找」和「二分查找」的情况类似。

View File

@@ -0,0 +1,6 @@
---
comments: true
---
# 归并排序

View File

@@ -0,0 +1,6 @@
---
comments: true
---
# 快速排序