Update docs for deployment on Vercel.

This commit is contained in:
krahets
2022-11-22 17:47:26 +08:00
parent eec011d595
commit 33d79ea6da
124 changed files with 3964 additions and 4 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

View File

@@ -0,0 +1,78 @@
# 双向队列
对于队列,我们只能在头部删除或在尾部添加元素,而「双向队列 Deque」更加灵活在其头部和尾部都能执行元素添加或删除操作。
![deque_operations](deque.assets/deque_operations.png)
<p style="text-align:center"> Fig. 双向队列的操作 </p>
## 双向队列常用操作
双向队列的常用操作见下表,方法名需根据编程语言设定来具体确定。
<p style="text-align:center"> Table. 双向队列的常用操作 </p>
<div class="center-table" markdown>
| 方法 | 描述 |
| ------------ | ---------------- |
| offerFirst() | 将元素添加至队首 |
| offerLast() | 将元素添加至队尾 |
| pollFirst() | 删除队首元素 |
| pollLast() | 删除队尾元素 |
| peekFirst() | 访问队首元素 |
| peekLast() | 访问队尾元素 |
| size() | 获取队列的长度 |
| isEmpty() | 判断队列是否为空 |
</div>
相同地,我们可以直接使用编程语言实现好的双向队列类。
=== "Java"
```java title="deque.java"
/* 初始化双向队列 */
Deque<Integer> deque = new LinkedList<>();
/* 元素入队 */
deque.offerLast(2);
deque.offerLast(5);
deque.offerLast(4);
deque.offerFirst(3);
deque.offerFirst(1);
System.out.println("队列 deque = " + deque);
/* 访问队首元素 */
int peekFirst = deque.peekFirst();
System.out.println("队首元素 peekFirst = " + peekFirst);
int peekLast = deque.peekLast();
System.out.println("队尾元素 peekLast = " + peekLast);
/* 元素出队 */
int pollFirst = deque.pollFirst();
System.out.println("队首出队元素 pollFirst = " + pollFirst +
",队首出队后 deque = " + deque);
int pollLast = deque.pollLast();
System.out.println("队尾出队元素 pollLast = " + pollLast +
",队尾出队后 deque = " + deque);
/* 获取队列的长度 */
int size = deque.size();
System.out.println("队列长度 size = " + size);
/* 判断队列是否为空 */
boolean isEmpty = deque.isEmpty();
```
=== "C++"
```cpp title="deque.cpp"
```
=== "Python"
```python title="deque.py"
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

View File

@@ -0,0 +1,218 @@
---
comments: true
---
# 队列
「队列 Queue」是一种遵循「先入先出 first in, first out」数据操作规则的线性数据结构。顾名思义队列模拟的是排队现象即外面的人不断加入队列尾部而处于队列头部的人不断地离开。
我们将队列头部称为「队首」,队列尾部称为「队尾」,将把元素加入队尾的操作称为「入队」,删除队首元素的操作称为「出队」。
![queue_operations](queue.assets/queue_operations.png)
<p style="text-align:center"> Fig. 队列的先入先出特性 </p>
## 队列常用操作
队列的常用操作见下表,方法命名需根据编程语言的设定来具体确定。
<p style="text-align:center"> Table. 队列的常用操作 </p>
<div class="center-table" markdown>
| 方法 | 描述 |
| --------- | ---------------------------- |
| offer() | 元素入队,即将元素添加至队尾 |
| poll() | 队首元素出队 |
| front() | 访问队首元素 |
| size() | 获取队列的长度 |
| isEmpty() | 判断队列是否为空 |
</div>
我们可以直接使用编程语言实现好的队列类。
=== "Java"
```java title="queue.java"
/* 初始化队列 */
Queue<Integer> queue = new LinkedList<>();
/* 元素入队 */
queue.offer(1);
queue.offer(3);
queue.offer(2);
queue.offer(5);
queue.offer(4);
System.out.println("队列 queue = " + queue);
/* 访问队首元素 */
int peek = queue.peek();
System.out.println("队首元素 peek = " + peek);
/* 元素出队 */
int poll = queue.poll();
System.out.println("出队元素 poll = " + poll + ",出队后 queue = " + queue);
/* 获取队列的长度 */
int size = queue.size();
System.out.println("队列长度 size = " + size);
/* 判断队列是否为空 */
boolean isEmpty = queue.isEmpty();
```
=== "C++"
```cpp title="queue.cpp"
```
=== "Python"
```python title="queue.py"
```
## 队列实现
队列需要一种可以在一端添加,并在另一端删除的数据结构,也可以使用链表或数组来实现。
### 基于链表的实现
我们将链表的「头结点」和「尾结点」分别看作是队首和队尾,并规定队尾只可添加结点,队首只可删除结点。
=== "Java"
```java title="linkedlist_queue.java"
/* 基于链表实现的队列 */
class LinkedListQueue {
LinkedList<Integer> list;
public LinkedListQueue() {
// 初始化链表
list = new LinkedList<>();
}
/* 获取队列的长度 */
public int size() {
return list.size();
}
/* 判断队列是否为空 */
public boolean isEmpty() {
return list.size() == 0;
}
/* 入队 */
public void offer(int num) {
// 尾结点后添加 num
list.addLast(num);
}
/* 出队 */
public int poll() {
// 删除头结点
return list.removeFirst();
}
/* 访问队首元素 */
public int peek() {
return list.getFirst();
}
}
```
=== "C++"
```cpp title="linkedlist_queue.cpp"
```
=== "Python"
```python title="linkedlist_queue.py"
```
### 基于数组的实现
数组的删除首元素的时间复杂度为 $O(n)$ ,因此不适合直接用来实现队列。然而,我们可以借助两个指针 `front` , `rear` 来分别记录队首和队尾的索引位置,在入队 / 出队时分别将 `front` / `rear` 向后移动一位即可,这样每次仅需操作一个元素,时间复杂度降至 $O(1)$ 。
还有一个问题,在入队与出队的过程中,两个指针都在向后移动,而到达尾部后则无法继续移动了。为了解决此问题,我们可以采取一个取巧方案,即将数组看作是 “环形” 的。具体做法是规定指针越过数组尾部后,再次回到头部接续遍历,这样相当于使数组 “首尾相连” 了。
为了适应环形数组的设定,获取长度 `size()` 、入队 `offer()` 、出队 `poll()` 方法都需要做相应的取余操作处理,使得当尾指针绕回数组头部时,仍然可以正确处理操作。
基于数组实现的队列有一个缺点,即长度不可变。但这点我们可以通过动态数组来解决,有兴趣的同学可以自行实现。
=== "Java"
```java title="array_queue.java"
/* 基于环形数组实现的队列 */
class ArrayQueue {
int[] nums; // 用于存储队列元素的数组
int size = 0; // 队列长度(即元素个数)
int front = 0; // 头指针,指向队首
int rear = 0; // 尾指针,指向队尾 + 1
public ArrayQueue(int capacity) {
// 初始化数组
nums = new int[capacity];
}
/* 获取队列的容量 */
public int capacity() {
return nums.length;
}
/* 获取队列的长度 */
public int size() {
int capacity = capacity();
// 由于将数组看作为环形,可能 rear < front ,因此需要取余数
return (capacity + rear - front) % capacity;
}
/* 判断队列是否为空 */
public boolean isEmpty() {
return rear - front == 0;
}
/* 入队 */
public void offer(int num) {
if (size() == capacity()) {
System.out.println("队列已满");
return;
}
// 尾结点后添加 num
nums[rear] = num;
// 尾指针向后移动一位,越过尾部后返回到数组头部
rear = (rear + 1) % capacity();
}
/* 出队 */
public int poll() {
// 删除头结点
if (isEmpty())
throw new EmptyStackException();
int num = nums[front];
// 队头指针向后移动,越过尾部后返回到数组头部
front = (front + 1) % capacity();
return num;
}
/* 访问队首元素 */
public int peek() {
// 删除头结点
if (isEmpty())
throw new EmptyStackException();
return nums[front];
}
}
```
=== "C++"
```cpp title="array_queue.cpp"
```
=== "Python"
```python title="array_queue.py"
```
## 队列典型应用
- **淘宝订单。** 购物者下单后,订单就被加入到队列之中,随后系统再根据顺序依次处理队列中的订单。在双十一时,在短时间内会产生海量的订单,如何处理「高并发」则是工程师们需要重点思考的问题。
- **各种待办事项。** 例如打印机的任务队列、餐厅的出餐队列等等。

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View File

@@ -0,0 +1,197 @@
---
comments: true
---
# 栈
「栈 Stack」是一种遵循「先入后出 first in, last out」数据操作规则的线性数据结构。我们可以将栈类比为放在桌面上的一摞盘子如果需要拿出底部的盘子则需要先将上面的盘子依次取出。
我们将顶部盘子称为「栈顶」,底部盘子称为「栈底」,将把元素添加到栈顶的操作称为「入栈」,将删除栈顶元素的操作称为「出栈」。
![stack_operations](stack.assets/stack_operations.png)
<p style="text-align:center"> Fig. 栈的先入后出特性 </p>
## 栈常用操作
栈的常用操作见下表,方法名需根据编程语言设定来具体确定。
<p style="text-align:center"> Table. 栈的常用操作 </p>
<div class="center-table" markdown>
| 方法 | 描述 |
| --------- | ---------------------- |
| push() | 元素入栈(添加至栈顶) |
| pop() | 栈顶元素出栈 |
| peek() | 访问栈顶元素 |
| size() | 获取栈的长度 |
| isEmpty() | 判断栈是否为空 |
</div>
我们可以直接使用编程语言实现好的栈类。
=== "Java"
```java title="stack.java"
/* 初始化栈 */
Stack<Integer> stack = new Stack<>();
/* 元素入栈 */
stack.push(1);
stack.push(3);
stack.push(2);
stack.push(5);
stack.push(4);
System.out.println("栈 stack = " + stack);
/* 访问栈顶元素 */
int peek = stack.peek();
System.out.println("栈顶元素 peek = " + peek);
/* 元素出栈 */
int pop = stack.pop();
System.out.println("出栈元素 pop = " + pop + ",出栈后 stack = " + stack);
/* 获取栈的长度 */
int size = stack.size();
System.out.println("栈的长度 size = " + size);
/* 判断是否为空 */
boolean isEmpty = stack.isEmpty();
```
=== "C++"
```cpp title="stack.cpp"
```
=== "Python"
```python title="stack.py"
```
## 栈的实现
为了更加清晰地了解栈的运行机制,接下来我们来自己动手实现一个栈类。
栈规定元素是先入后出的,因此我们只能在栈顶添加或删除元素。然而,数组或链表都可以在任意位置添加删除元素,因此 **栈可被看作是一种受约束的数组或链表**。换言之,我们可以 “屏蔽” 数组或链表的部分无关操作,使之对外的表现逻辑符合栈的规定即可。
### 基于链表的实现
使用「链表」实现栈时,将链表的尾结点看作栈顶即可。
受益于链表的离散存储方式,栈的扩容更加灵活,删除元素的内存也会被系统自动回收;缺点是无法像数组一样高效地随机访问,并且由于链表结点需存储指针,导致单个元素占用空间更大。
=== "Java"
```java title="linkedlist_stack.java"
/* 基于链表实现的栈 */
class LinkedListStack {
LinkedList<Integer> list;
public LinkedListStack() {
// 初始化链表
list = new LinkedList<>();
}
/* 获取栈的长度 */
public int size() {
return list.size();
}
/* 判断栈是否为空 */
public boolean isEmpty() {
return size() == 0;
}
/* 入栈 */
public void push(int num) {
list.addLast(num);
}
/* 出栈 */
public int pop() {
return list.removeLast();
}
/* 访问栈顶元素 */
public int peek() {
return list.getLast();
}
}
```
=== "C++"
```cpp title="linkedlist_stack.cpp"
```
=== "Python"
```python title="linkedlist_stack.py"
```
### 基于数组的实现
使用「数组」实现栈时,将数组的尾部当作栈顶。准确地说,我们需要使用「列表」,因为入栈的元素可能是源源不断的,因此使用动态数组可以方便扩容。
基于数组实现的栈,优点是支持随机访问,缺点是会造成一定的空间浪费,因为列表的容量始终 $\geq$ 元素数量。
=== "Java"
```java title="array_stack.java"
/* 基于数组实现的栈 */
class ArrayStack {
List<Integer> list;
public ArrayStack() {
// 初始化列表(动态数组)
list = new ArrayList<>();
}
/* 获取栈的长度 */
public int size() {
return list.size();
}
/* 判断栈是否为空 */
public boolean isEmpty() {
return size() == 0;
}
/* 入栈 */
public void push(int num) {
list.add(num);
}
/* 出栈 */
public int pop() {
return list.remove(size() - 1);
}
/* 访问栈顶元素 */
public int peek() {
return list.get(size() - 1);
}
/* 访问索引 index 处元素 */
public int get(int index) {
return list.get(index);
}
}
```
=== "C++"
```cpp title="array_stack.cpp"
```
=== "Python"
```python title="array_stack.py"
```
!!! tip
实际编程中,我们一般直接将 `ArrayList` 或 `LinkedList` 当作「栈」来使用。我们仅需通过脑补来屏蔽无关操作,而不用专门去包装它。
## 栈典型应用
- **浏览器中的后退与前进、软件中的撤销与反撤销。** 每当我们打开新的网页,浏览器就讲上一个网页执行入栈,这样我们就可以通过「后退」操作来回到上一页面,后退操作实际上是在执行出栈。如果要同时支持后退和前进,那么则需要两个栈来配合实现。
- **程序内存管理。** 每当调用函数时,系统就会站栈顶添加一个栈帧,用来记录函数的上下文信息。在递归函数中,向下递推会不断执行入栈,向上回溯阶段时出栈。

View File

@@ -0,0 +1,9 @@
---
comments: true
---
# 小结
- 栈是一种遵循先入后出的数据结构,可以使用数组或链表实现。
- 队列是一种遵循先入先出的数据结构,可以使用数组或链表实现。
- 双向队列的两端都可以添加与删除元素。