Add auto hide style to the sidebar scrollwrap.

This commit is contained in:
Yudong Jin 2022-12-11 16:52:04 +08:00
parent ba9eb8557c
commit 47dd285100
11 changed files with 98 additions and 88 deletions

View File

@ -0,0 +1,38 @@
---
comments: true
---
# 算法无处不在
听到 “算法” 这个词,我们一般会联想到数学。但实际上,大多数算法并不包含复杂的数学,而更像是在考察基本逻辑,而这些逻辑在我们日常生活中处处可见。
在正式介绍算法之前,我想告诉你一件有趣的事:**其实,你在过去已经学会了很多算法,并且已经习惯将它们应用到日常生活中。** 接下来,我将介绍两个具体例子来佐证。
**例一:拼积木。** 一套积木,除了有许多部件之外,还会附送详细的拼装说明书。我们按照说明书上一步步操作,即可拼出复杂的积木模型。
如果从数据结构与算法的角度看,大大小小的「积木」就是数据结构,而「拼装说明书」上的一系列步骤就是算法。
**例二:查字典。** 在字典中,每个汉字都有一个对应的拼音,而字典是按照拼音的英文字母表顺序排列的。假设需要在字典中查询任意一个拼音首字母为 $r$ 的字,一般我们会这样做:
1. 打开字典大致一半页数的位置,查看此页的首字母是什么(假设为 $m$
2. 由于在英文字母表中 $r$ 在 $m$ 的后面,因此应排除字典前半部分,查找范围仅剩后半部分;
3. 循环执行步骤 1-2 ,直到找到拼音首字母为 $r$ 的页码时终止。
=== "Step 1"
![look_up_dictionary_step_1](algorithms_are_everywhere.assets/look_up_dictionary_step_1.png)
=== "Step 2"
![look_up_dictionary_step_2](algorithms_are_everywhere.assets/look_up_dictionary_step_2.png)
=== "Step 3"
![look_up_dictionary_step_3](algorithms_are_everywhere.assets/look_up_dictionary_step_3.png)
=== "Step 4"
![look_up_dictionary_step_4](algorithms_are_everywhere.assets/look_up_dictionary_step_4.png)
=== "Step 5"
![look_up_dictionary_step_5](algorithms_are_everywhere.assets/look_up_dictionary_step_5.png)
查字典这个小学生的标配技能,实际上就是大名鼎鼎的「二分查找」。从数据结构角度,我们可以将字典看作是一个已排序的「数组」;而从算法角度,我们可将上述查字典的一系列指令看作是「二分查找」算法。
小到烹饪一道菜、大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现,使我们可以通过编程将数据结构存储在内存中,也可以编写代码来调用 CPU, GPU 执行算法,从而将生活中的问题搬运到计算机中,更加高效地解决各式各样的复杂问题。
!!! tip
读到这里,如果你感到对数据结构、算法、数组、二分查找等此类概念一知半解,那么就太好了!因为这正是本书存在的价值,接下来,本书将会一步步地引导你进入数据结构与算法的知识殿堂。

View File

@ -1,84 +0,0 @@
---
comments: true
---
# 算法是什么
听到 “算法” 这个词,我们一般会联想到数学。但实际上,大多数算法并不包含复杂的数学,而更像是在考察基本逻辑,而这些逻辑在我们日常生活中处处可见。
在正式介绍算法之前,我想告诉你一件有趣的事:**其实,你在过去已经学会了很多算法,并且已经习惯将它们应用到日常生活中。** 接下来,我将介绍两个具体例子来佐证。
**例一:拼积木。** 一套积木,除了有许多部件之外,还会附送详细的拼装说明书。我们按照说明书上一步步操作,即可拼出复杂的积木模型。
如果从数据结构与算法的角度看,大大小小的「积木」就是数据结构,而「拼装说明书」上的一系列步骤就是算法。
**例二:查字典。** 在字典中,每个汉字都有一个对应的拼音,而字典是按照拼音的英文字母表顺序排列的。假设需要在字典中查询任意一个拼音首字母为 $r$ 的字,一般我们会这样做:
1. 打开字典大致一半页数的位置,查看此页的首字母是什么(假设为 $m$
2. 由于在英文字母表中 $r$ 在 $m$ 的后面,因此应排除字典前半部分,查找范围仅剩后半部分;
3. 循环执行步骤 1-2 ,直到找到拼音首字母为 $r$ 的页码时终止。
=== "Step 1"
![look_up_dictionary_step_1](index.assets/look_up_dictionary_step_1.png)
=== "Step 2"
![look_up_dictionary_step_2](index.assets/look_up_dictionary_step_2.png)
=== "Step 3"
![look_up_dictionary_step_3](index.assets/look_up_dictionary_step_3.png)
=== "Step 4"
![look_up_dictionary_step_4](index.assets/look_up_dictionary_step_4.png)
=== "Step 5"
![look_up_dictionary_step_5](index.assets/look_up_dictionary_step_5.png)
查字典这个小学生的标配技能,实际上就是大名鼎鼎的「二分查找」。从数据结构角度,我们可以将字典看作是一个已排序的「数组」;而从算法角度,我们可将上述查字典的一系列指令看作是「二分查找」算法。
小到烹饪一道菜、大到星际航行,几乎所有问题的解决都离不开算法。计算机的出现,使我们可以通过编程将数据结构存储在内存中,也可以编写代码来调用 CPU, GPU 执行算法,从而将生活中的问题搬运到计算机中,更加高效地解决各式各样的复杂问题。
!!! tip
读到这里,如果你感到对数据结构、算法、数组、二分查找等此类概念一知半解,那么就太好了!因为这正是本书存在的价值,接下来,本书将会一步步地引导你进入数据结构与算法的知识殿堂。
## 算法是什么?
「算法 Algorithm」是在有限时间内解决问题的一组指令或操作步骤。算法具有以下特性
- 问题是明确的,需要拥有明确的输入和输出定义。
- 解具有确定性,即给定相同输入时,输出一定相同。
- 具有可行性,可在有限步骤、有限时间、有限内存空间下完成。
- 独立于编程语言,即可用多种语言实现。
## 数据结构是什么?
「数据结构 Data Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能数据结构的设计原则有
- 空间占用尽可能小,节省计算机内存。
- 数据操作尽量快,包括数据访问、添加、删除、更新等。
- 提供简洁的数据表示和逻辑信息,以便算法高效运行。
数据结构的设计是一个充满权衡的过程,这意味着如果获得某方面的优势,则往往需要在另一方面做出妥协。例如,链表相对于数组,数据添加删除操作更加方便,但牺牲了数据的访问速度;图相对于链表,提供了更多的逻辑信息,但需要占用更多的内存空间。
## 数据结构与算法的关系
「数据结构」与「算法」是高度相关、紧密嵌合的,体现在:
- 数据结构是算法的底座。数据结构为算法提供结构化存储的数据,以及操作数据的对应方法。
- 算法是发挥数据结构优势的舞台。数据结构仅存储数据信息,结合算法才可解决特定问题。
- 算法有对应最优的数据结构。给定算法,一般可基于不同的数据结构实现,而最终执行效率往往相差很大。
如果将数据结构与算法比作「LEGO 乐高」,数据结构就是乐高「积木」,而算法就是把积木拼成目标形态的一系列「操作步骤」。
![relationship_between_data_structure_and_algorithm](index.assets/relationship_between_data_structure_and_algorithm.png)
<p align="center"> Fig. 数据结构与算法的关系 </p>
!!! tip "约定俗成的习惯"
在实际讨论中,我们通常会将「数据结构与算法」简称为「算法」。例如,我们熟称的 LeetCode 算法题目,实际上同时考察了数据结构和算法两部分知识。

View File

@ -0,0 +1,42 @@
---
comments: true
---
# 算法是什么
## 算法定义
「算法 Algorithm」是在有限时间内解决问题的一组指令或操作步骤。算法具有以下特性
- 问题是明确的,需要拥有明确的输入和输出定义。
- 解具有确定性,即给定相同输入时,输出一定相同。
- 具有可行性,可在有限步骤、有限时间、有限内存空间下完成。
- 独立于编程语言,即可用多种语言实现。
## 数据结构定义
「数据结构 Data Structure」是在计算机中组织与存储数据的方式。为了提高数据存储和操作性能数据结构的设计原则有
- 空间占用尽可能小,节省计算机内存。
- 数据操作尽量快,包括数据访问、添加、删除、更新等。
- 提供简洁的数据表示和逻辑信息,以便算法高效运行。
数据结构的设计是一个充满权衡的过程,这意味着如果获得某方面的优势,则往往需要在另一方面做出妥协。例如,链表相对于数组,数据添加删除操作更加方便,但牺牲了数据的访问速度;图相对于链表,提供了更多的逻辑信息,但需要占用更多的内存空间。
## 数据结构与算法的关系
「数据结构」与「算法」是高度相关、紧密嵌合的,体现在:
- 数据结构是算法的底座。数据结构为算法提供结构化存储的数据,以及操作数据的对应方法。
- 算法是发挥数据结构优势的舞台。数据结构仅存储数据信息,结合算法才可解决特定问题。
- 算法有对应最优的数据结构。给定算法,一般可基于不同的数据结构实现,而最终执行效率往往相差很大。
如果将数据结构与算法比作「LEGO 乐高」,数据结构就是乐高「积木」,而算法就是把积木拼成目标形态的一系列「操作步骤」。
![relationship_between_data_structure_and_algorithm](what_is_dsa.assets/relationship_between_data_structure_and_algorithm.png)
<p align="center"> Fig. 数据结构与算法的关系 </p>
!!! tip "约定俗成的习惯"
在实际讨论中,我们通常会将「数据结构与算法」简称为「算法」。例如,我们熟称的 LeetCode 算法题目,实际上同时考察了数据结构和算法两部分知识。

View File

@ -57,3 +57,16 @@
display: block; display: block;
margin: 0 auto; margin: 0 auto;
} }
/* navigation scrollbar */
.md-sidebar__scrollwrap {
overflow-y: hidden;
}
.md-sidebar__scrollwrap:hover {
overflow-y: auto;
}
/* .md-sidebar__scrollwrap::-webkit-scrollbar-thumb {
background-color: var(--md-default-fg-color--lightest);
} */

View File

@ -26,7 +26,7 @@ theme:
- navigation.indexes - navigation.indexes
# - navigation.instant # - navigation.instant
# - navigation.prune # - navigation.prune
# - navigation.sections - navigation.sections
# - navigation.tabs # - navigation.tabs
# - navigation.tabs.sticky # - navigation.tabs.sticky
# - navigation.top # - navigation.top
@ -118,13 +118,14 @@ extra_css:
# Page tree # Page tree
nav: nav:
- 前言: - 写在前面:
- 关于本书: chapter_preface/about_the_book.md - 关于本书: chapter_preface/about_the_book.md
- 如何使用本书: chapter_preface/suggestions.md - 如何使用本书: chapter_preface/suggestions.md
- 编程环境安装: chapter_preface/installation.md - 编程环境安装: chapter_preface/installation.md
- 一起参与创作: chapter_preface/contribution.md - 一起参与创作: chapter_preface/contribution.md
- 算法是什么: - 引言:
- chapter_introduction/index.md - 算法无处不在: chapter_introduction/algorithms_are_everywhere.md
- 算法是什么: chapter_introduction/what_is_dsa.md
- 计算复杂度: - 计算复杂度:
- 算法效率评估: chapter_computational_complexity/performance_evaluation.md - 算法效率评估: chapter_computational_complexity/performance_evaluation.md
- 时间复杂度: chapter_computational_complexity/time_complexity.md - 时间复杂度: chapter_computational_complexity/time_complexity.md