This commit is contained in:
NIngCoder 2022-11-25 23:36:28 +08:00
parent 121cb10209
commit 7b8ee7fb4b
4 changed files with 224 additions and 99 deletions

View File

@ -1,37 +1,47 @@
''' '''
File: bubble_sort.py File: bubble_sort.py
Created Time: 2022-11-25 Created Time: 2022-11-25
Author: Krahets (krahets@163.com) Author: timi (xisunyy@163.com)
''' '''
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import * from include import *
import sys
import os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
"冒泡排序" """冒泡排序"""
def bubble_sort(nums): def bubble_sort(nums):
n=len(nums) n = len(nums)
# 外循环:待排序元素数量为 n-1, n-2, ..., 1 # 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(n-1,-1,-1): for i in range(n-1, -1, -1):
# 内循环:冒泡操作 # 内循环:冒泡操作
for j in range(i): for j in range(i):
if nums[j]>nums[j+1]: # 交换 nums[j] 与 nums[j + 1]
nums[j],nums[j+1]=nums[j+1],nums[j] if nums[j] > nums[j+1]:
"冒泡排序(标志优化)" nums[j], nums[j+1] = nums[j+1], nums[j]
def bubbleSortWithFlag(nums):
n=len(nums)
"""冒泡排序(标志优化)"""
def bubble_sort_with_flag(nums):
n = len(nums)
# 外循环:待排序元素数量为 n-1, n-2, ..., 1 # 外循环:待排序元素数量为 n-1, n-2, ..., 1
for i in range(n-1,-1,-1): for i in range(n-1, -1, -1):
flag=False #初始化标志位 flag = False # 初始化标志位
# 内循环:冒泡操作 # 内循环:冒泡操作
for j in range(i): for j in range(i):
if nums[j]>nums[j+1]: # 交换 nums[j] 与 nums[j + 1]
nums[j],nums[j+1]=nums[j+1],nums[j] if nums[j] > nums[j+1]:
flag=True #记录交换元素 nums[j], nums[j+1] = nums[j+1], nums[j]
if not flag:break flag = True # 记录交换元素
if __name__=='__main__': if not flag:
nums=[4,1,3,1,5,2] break # 此轮冒泡未交换任何元素,直接跳出
if __name__ == '__main__':
nums = [4, 1, 3, 1, 5, 2]
bubble_sort(nums) bubble_sort(nums)
print("冒泡排序后数组 nums = " ,nums) print("排序后数组 nums = ", nums)
bubbleSortWithFlag(nums)
print("冒泡排序后数组 nums = " ,nums) nums1 = [4, 1, 3, 1, 5, 2]
bubble_sort_with_flag(nums1)
print("排序后数组 nums = ", nums1)

View File

@ -1,26 +1,28 @@
''' '''
File: insertion_sort.py File: insertion_sort.py
Created Time: 2022-11-25 Created Time: 2022-11-25
Author: Krahets (krahets@163.com) Author: timi (xisunyy@163.com)
''' '''
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import * from include import *
import sys
import os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
"直接插入排序" """插入排序"""
def insertionSort(nums): def insertion_sort(nums):
#外循环base = nums[1], nums[2], ..., nums[n-1] # 外循环base = nums[1], nums[2], ..., nums[n-1]
for i in range(1,len(nums)): for i in range(1, len(nums)):
base=nums[i] base = nums[i]
j=i-1 j = i-1
#内循环:将 base 插入到左边的正确位置 # 内循环:将 base 插入到左边的正确位置
while j>=0 and nums[j]>base: while j >= 0 and nums[j] > base:
nums[j+1]=nums[j] #1. 将 nums[j] 向右移动一位 nums[j+1] = nums[j] # 1. 将 nums[j] 向右移动一位
j-=1 j -= 1
nums[j+1]=base #2. 将 base 赋值到正确位置 nums[j+1] = base # 2. 将 base 赋值到正确位置
if __name__=='__main__':
nums=[4,1,3,1,5,2] if __name__ == '__main__':
insertionSort(nums) nums = [4, 1, 3, 1, 5, 2]
print("排序后数组 nums = " ,nums) insertion_sort(nums)
print("排序后数组 nums = ", nums)

View File

@ -1,48 +1,60 @@
''' '''
File: merge_sort.py File: merge_sort.py
Created Time: 2022-11-25 Created Time: 2022-11-25
Author: Krahets (krahets@163.com) Author: timi (xisunyy@163.com)
''' '''
import sys, os.path as osp import copy
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import * from include import *
import sys
import os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
""" """
另一种 思路实现归并排序 合并左子数组和右子数组
左子数组区间 [left, mid]
右子数组区间 [mid + 1, right]
""" """
def merge_sort(nums,l,r): def merge(nums, left, mid, right):
if l>=r:return # 初始化辅助数组 借助 copy模块
mid=l+r>>1 #划分中点 tmp = copy.deepcopy(nums[left:right+1])
#进行归并 # 左子数组的起始索引和结束索引
merge_sort(nums,l,mid) leftStart, leftEnd = left-left, mid - left
merge_sort(nums,mid+1,r) # 右子数组的起始索引和结束索引
rightStart, rightEnd = mid + 1 - left, right - left
k,i,j=0,l,mid+1 #借助辅助数组 完成排序 # i, j 分别指向左子数组、右子数组的首元素
while i<=mid and j<=r: i, j = leftStart, rightStart
if nums[i]<=nums[j]: #这一步保证了 稳定排序 # 通过覆盖原数组 nums 来合并左子数组和右子数组
help_ls[k]=nums[i] for k in range(left, right+1):
i+=1 # 若 “左子数组已全部合并完”,则选取右子数组元素,并且 j++
if i > leftEnd:
nums[k] = tmp[j]
j += 1
# 否则,若 “右子数组已全部合并完” 或 “左子数组元素 < 右子数组元素”,则选取左子数组元素,并且 i++
elif j > rightEnd or tmp[i] <= tmp[j]:
nums[k] = tmp[i]
i += 1
# 否则,若 “左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++
else: else:
help_ls[k]=nums[j] nums[k] = tmp[j]
j+=1 j += 1
k+=1
while i<=mid: #对于左边区域
help_ls[k]=nums[i]
k,i=k+1,i+1
while j<=r: #对于右边区域
help_ls[k]=nums[j]
k,j=k+1,j+1
i,j=l,0 """归并排序"""
while i<=r: def merge_sort(nums, left, right):
nums[i]=help_ls[j] # 终止条件
i,j=i+1,j+1 if left >= right:
if __name__=='__main__': return # 当子数组长度为 1 时终止递归
nums=[4,1,3,1,5,2] # 划分阶段
n=len(nums) mid = left + right >> 1 # 计算中点
help_ls=[0 for _ in range(n)] merge_sort(nums, left, mid) # 递归左子数组
merge_sort(nums,0,n-1) merge_sort(nums, mid + 1, right) # 递归右子数组
print("归并排序完成后 nums = ",nums) # 合并阶段
merge(nums, left, mid, right)
if __name__ == '__main__':
nums = [4, 1, 3, 1, 5, 2]
merge_sort(nums, 0, len(nums)-1)
print("归并排序完成后 nums = ", nums)

View File

@ -1,31 +1,132 @@
''' '''
File: quick_sort.py File: quick_sort.py
Created Time: 2022-11-25 Created Time: 2022-11-25
Author: Krahets (krahets@163.com) Author: timi (xisunyy@163.com)
''' '''
import sys, os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
from include import * from include import *
import sys
import os.path as osp
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
"另一种思维 实现快速排序" """快速排序类"""
def quick_sort(nums,l,r): class quick_sort(object):
if l>=r:
"""哨兵划分"""
def partition(self, nums, left, right):
# 以 nums[left] 作为基准数
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
j -= 1 # 从右向左找首个小于基准数的元素
while i < j and nums[i] <= nums[left]:
i += 1 # 从左向右找首个大于基准数的元素
# 元素交换
nums[i], nums[j] = nums[j], nums[i]
# 将基准数交换至两子数组的分界线
nums[i], nums[left] = nums[left], nums[i]
return i # 返回基准数的索引
"""快速排序"""
def quick_sort(self, nums, left, right):
# 子数组长度为 1 时终止递归
if left >= right:
return return
i,j,x=l-1,r+1,nums[l+r>>1] # 哨兵划分
while i<j: pivot = self.partition(nums, left, right)
while True: # 递归左子数组、右子数组
i+=1 self.quick_sort(nums, left, pivot-1)
if nums[i]>=x:break self.quick_sort(nums, pivot+1, right)
while True:
j-=1
if nums[j]<=x:break """快速排序类(中位基准数优化)"""
if i<j:nums[i],nums[j]=nums[j],nums[i] class quick_sort_median():
quick_sort(nums,l,j),quick_sort(nums,j+1,r)
if __name__=='__main__': # 选取三个元素的中位数
nums=[4,1,3,1,5,2] def median_three(self, nums, left, mid, right):
n=len(nums) # 使用了异或操作来简化代码
help_ls=[0 for _ in range(n)] # 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1
quick_sort(nums,0,n-1) if (nums[left] > nums[mid]) ^ (nums[left] > nums[right]):
print("快速排序完成后 nums = ",nums) return left
elif (nums[mid] < nums[left]) ^ (nums[mid] > nums[right]):
return mid
return right
"""哨兵划分(三数取中值)"""
def partition(self, nums, left, right):
# 以 nums[left] 作为基准数
med = self.median_three(nums, left, (left+right)//2, right)
# 将中位数交换至数组最左端
nums[left], nums[med] = nums[med], nums[left]
# 以 nums[left] 作为基准数
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
j -= 1 # 从右向左找首个小于基准数的元素
while i < j and nums[i] <= nums[left]:
i += 1 # 从左向右找首个大于基准数的元素
# 元素交换
nums[i], nums[j] = nums[j], nums[i]
# 将基准数交换至两子数组的分界线
nums[i], nums[left] = nums[left], nums[i]
return i # 返回基准数的索引
"""快速排序"""
def quick_sort(self, nums, left, right):
# 子数组长度为 1 时终止递归
if left >= right:return
# 哨兵划分
pivot = self.partition(nums, left, right)
# 递归左子数组、右子数组
self.quick_sort(nums, left, pivot-1)
self.quick_sort(nums, pivot+1, right)
"""快速排序类(尾递归优化)"""
class quick_sort_tail_call():
"""哨兵划分"""
def partition(self, nums, left, right):
# 以 nums[left] 作为基准数
i, j = left, right
while i < j:
while i < j and nums[j] >= nums[left]:
j -= 1 # 从右向左找首个小于基准数的元素
while i < j and nums[i] <= nums[left]:
i += 1 # 从左向右找首个大于基准数的元素
# 元素交换
nums[i], nums[j] = nums[j], nums[i]
# 将基准数交换至两子数组的分界线
nums[i], nums[left] = nums[left], nums[i]
return i # 返回基准数的索引
"""快速排序(尾递归优化)"""
def quick_sort(self, nums, left, right):
# 子数组长度为 1 时终止
while left < right:
# 哨兵划分操作
pivot = self.partition(nums, left, right)
# 对两个子数组中较短的那个执行快排
if pivot-left < right-pivot:
self.quick_sort(nums, left, pivot-1) # 递归排序左子数组
left = pivot+1 # 剩余待排序区间为 [pivot + 1, right]
else:
self.quick_sort(nums, pivot+1, right) # 递归排序右子数组
right = pivot-1 # 剩余待排序区间为 [left, pivot - 1]
if __name__ == '__main__':
# 快速排序
nums = [4, 1, 3, 1, 5, 2]
quick_sort().quick_sort(nums, 0, len(nums)-1)
print("快速排序完成后 nums = ", nums)
# 快速排序(中位基准数优化)
nums1 = [4, 1, 3, 1, 5, 2]
quick_sort_median().quick_sort(nums1, 0, len(nums1)-1)
print("快速排序(中位基准数优化)完成后 nums = ", nums)
# 快速排序(尾递归优化)
nums2 = [4, 1, 3, 1, 5, 2]
quick_sort_tail_call().quick_sort(nums, 0, len(nums2)-1)
print("快速排序(尾递归优化)完成后 nums = ", nums)