From 9bd5980a81ec3d3a48bcd85b17f6c2d0fad86ad0 Mon Sep 17 00:00:00 2001 From: Yudong Jin Date: Sat, 3 Dec 2022 01:31:29 +0800 Subject: [PATCH] Organizing all the code blocks. --- docs/chapter_array_and_linkedlist/array.md | 322 +++++++---- .../linked_list.md | 180 +++++++ docs/chapter_array_and_linkedlist/list.md | 210 ++++++++ .../space_complexity.md | 270 ++++++++++ .../space_time_tradeoff.md | 52 +- .../time_complexity.md | 504 +++++++++++++++++- .../chapter_data_structure/data_and_memory.md | 32 +- docs/chapter_searching/binary_search.md | 109 +++- docs/chapter_searching/hashing_search.md | 72 +++ docs/chapter_searching/linear_search.md | 72 +++ docs/chapter_searching/summary.md | 4 + docs/chapter_sorting/bubble_sort.md | 134 +++-- docs/chapter_sorting/insertion_sort.md | 60 ++- docs/chapter_sorting/merge_sort.md | 114 ++-- docs/chapter_sorting/quick_sort.md | 278 ++++++---- docs/chapter_stack_and_queue/deque.md | 30 ++ docs/chapter_stack_and_queue/queue.md | 90 ++++ docs/chapter_stack_and_queue/stack.md | 90 ++++ docs/chapter_tree/binary_search_tree.md | 72 +++ docs/chapter_tree/binary_tree.md | 128 ++++- docs/chapter_tree/binary_tree_types.md | 7 +- 21 files changed, 2520 insertions(+), 310 deletions(-) diff --git a/docs/chapter_array_and_linkedlist/array.md b/docs/chapter_array_and_linkedlist/array.md index 44cafd3..74e2063 100644 --- a/docs/chapter_array_and_linkedlist/array.md +++ b/docs/chapter_array_and_linkedlist/array.md @@ -24,14 +24,6 @@ comments: true int[] nums = { 1, 3, 2, 5, 4 }; ``` -=== "JavaScript" - - ```javascript title="array.javascript" - /* 初始化数组 */ - var arr = new Array(5).fill(0) - var nums = [1, 3, 2, 5, 4] - ``` - === "C++" ```cpp title="array.cpp" @@ -48,6 +40,38 @@ comments: true nums = [1, 3, 2, 5, 4] ``` +=== "Go" + + ```go title="array.go" + + ``` + +=== "JavaScript" + + ```javascript title="array.js" + /* 初始化数组 */ + var arr = new Array(5).fill(0) + var nums = [1, 3, 2, 5, 4] + ``` + +=== "TypeScript" + + ```typescript title="array.ts" + + ``` + +=== "C" + + ```c title="array.c" + + ``` + +=== "C#" + + ```csharp title="array.cs" + + ``` + ## 数组优点 **在数组中访问元素非常高效。** 这是因为在数组中,计算元素的内存地址非常容易。给定数组首个元素的地址、和一个元素的索引,利用以下公式可以直接计算得到该元素的内存地址,从而直接访问此元素。 @@ -77,19 +101,6 @@ elementAddr = firtstElementAddr + elementLength * elementIndex } ``` -=== "JavaScript" - - ```javascript title="array.javascript" - /* 随机返回一个数组元素 */ - function randomAccess(nums){ - // 在区间 [0, nums.length) 中随机抽取一个数字 - const random_index = Math.floor(Math.random() * nums.length) - // 获取并返回随机元素 - random_num = nums[random_index] - return random_num - } - ``` - === "C++" ```cpp title="array.cpp" @@ -115,6 +126,43 @@ elementAddr = firtstElementAddr + elementLength * elementIndex return random_num ``` +=== "Go" + + ```go title="array.go" + + ``` + +=== "JavaScript" + + ```javascript title="array.js" + /* 随机返回一个数组元素 */ + function randomAccess(nums){ + // 在区间 [0, nums.length) 中随机抽取一个数字 + const random_index = Math.floor(Math.random() * nums.length) + // 获取并返回随机元素 + random_num = nums[random_index] + return random_num + } + ``` + +=== "TypeScript" + + ```typescript title="array.ts" + + ``` + +=== "C" + + ```c title="array.c" + + ``` + +=== "C#" + + ```csharp title="array.cs" + + ``` + ## 数组缺点 **数组在初始化后长度不可变。** 由于系统无法保证数组之后的内存空间是可用的,因此数组长度无法扩展。而若希望扩容数组,则需新建一个数组,然后把原数组元素依次拷贝到新数组,在数组很大的情况下,这是非常耗时的。 @@ -135,22 +183,6 @@ elementAddr = firtstElementAddr + elementLength * elementIndex } ``` -=== "JavaScript" - - ```javascript title="array.javascript" - /* 扩展数组长度 */ - function extend(nums, enlarge){ - // 初始化一个扩展长度后的数组 - let res = new Array(nums.length + enlarge).fill(0) - // 将原数组中的所有元素复制到新数组 - for(let i=0; i= index; i--) { - nums[i] = nums[i - 1]; - } - // 将 num 赋给 index 处元素 - nums[index] = num; - } - - /* 删除索引 index 处元素 */ - function remove(nums, index){ - // 把索引 index 之后的所有元素向前移动一位 - for (let i = index; i < nums.length - 1; i++) { - nums[i] = nums[i + 1] - } - } - ``` - === "C++" ```cpp title="array.cpp" @@ -277,6 +327,52 @@ elementAddr = firtstElementAddr + elementLength * elementIndex nums[i] = nums[i + 1] ``` +=== "Go" + + ```go title="array.go" + + ``` + +=== "JavaScript" + + ```javascript title="array.js" + /* 在数组的索引 index 处插入元素 num */ + function insert(nums, num, index){ + // 把索引 index 以及之后的所有元素向后移动一位 + for (let i = nums.length - 1; i >= index; i--) { + nums[i] = nums[i - 1]; + } + // 将 num 赋给 index 处元素 + nums[index] = num; + } + + /* 删除索引 index 处元素 */ + function remove(nums, index){ + // 把索引 index 之后的所有元素向前移动一位 + for (let i = index; i < nums.length - 1; i++) { + nums[i] = nums[i + 1] + } + } + ``` + +=== "TypeScript" + + ```typescript title="array.ts" + + ``` + +=== "C" + + ```c title="array.c" + + ``` + +=== "C#" + + ```csharp title="array.cs" + + ``` + ## 数组常用操作 **数组遍历。** 以下介绍两种常用的遍历方法。 @@ -298,23 +394,6 @@ elementAddr = firtstElementAddr + elementLength * elementIndex } ``` -=== "JavaScript" - - ```javascript title="array.javascript" - /* 遍历数组 */ - function traverse(nums){ - let count = 0 - // 通过索引遍历数组 - for (let i = 0; i < nums.length; i++) { - count++; - } - // 直接遍历数组 - for(let num of nums){ - count += 1 - } - } - ``` - === "C++" ```cpp title="array.cpp" @@ -342,6 +421,47 @@ elementAddr = firtstElementAddr + elementLength * elementIndex count += 1 ``` +=== "Go" + + ```go title="array.go" + + ``` + +=== "JavaScript" + + ```javascript title="array.js" + /* 遍历数组 */ + function traverse(nums){ + let count = 0 + // 通过索引遍历数组 + for (let i = 0; i < nums.length; i++) { + count++; + } + // 直接遍历数组 + for(let num of nums){ + count += 1 + } + } + ``` + +=== "TypeScript" + + ```typescript title="array.ts" + + ``` + +=== "C" + + ```c title="array.c" + + ``` + +=== "C#" + + ```csharp title="array.cs" + + ``` + **数组查找。** 通过遍历数组,查找数组内的指定元素,并输出对应索引。 === "Java" @@ -357,19 +477,6 @@ elementAddr = firtstElementAddr + elementLength * elementIndex } ``` -=== "JavaScript" - - ```javascript title="array.javascript" - /* 在数组中查找指定元素 */ - function find(nums, target){ - for (let i = 0; i < nums.length; i++) { - if (nums[i] == target) - return i; - } - return -1 - } - ``` - === "C++" ```cpp title="array.cpp" @@ -394,6 +501,43 @@ elementAddr = firtstElementAddr + elementLength * elementIndex return -1 ``` +=== "Go" + + ```go title="array.go" + + ``` + +=== "JavaScript" + + ```javascript title="array.js" + /* 在数组中查找指定元素 */ + function find(nums, target){ + for (let i = 0; i < nums.length; i++) { + if (nums[i] == target) + return i; + } + return -1 + } + ``` + +=== "TypeScript" + + ```typescript title="array.ts" + + ``` + +=== "C" + + ```c title="array.c" + + ``` + +=== "C#" + + ```csharp title="array.cs" + + ``` + ## 数组典型应用 **随机访问。** 如果我们想要随机抽取一些样本,那么可以用数组存储,并生成一个随机序列,根据索引实现样本的随机抽取。 diff --git a/docs/chapter_array_and_linkedlist/linked_list.md b/docs/chapter_array_and_linkedlist/linked_list.md index 79dee24..d8dcce4 100644 --- a/docs/chapter_array_and_linkedlist/linked_list.md +++ b/docs/chapter_array_and_linkedlist/linked_list.md @@ -48,6 +48,36 @@ comments: true self.next = None # 指向下一结点的指针(引用) ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + **尾结点指向什么?** 我们一般将链表的最后一个结点称为「尾结点」,其指向的是「空」,在 Java / C++ / Python 中分别记为 `null` / `nullptr` / `None` 。在不引起歧义下,本书都使用 `null` 来表示空。 **链表初始化方法。** 建立链表分为两步,第一步是初始化各个结点对象,第二步是构建引用指向关系。完成后,即可以从链表的首个结点(即头结点)出发,访问其余所有的结点。 @@ -107,6 +137,36 @@ comments: true n3.next = n4 ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ## 链表优点 **在链表中,插入与删除结点的操作效率高。** 例如,如果想在链表中间的两个结点 `A` , `B` 之间插入一个新结点 `P` ,我们只需要改变两个结点指针即可,时间复杂度为 $O(1)$ ,相比数组的插入操作高效很多。在链表中删除某个结点也很方便,只需要改变一个结点指针即可。 @@ -176,6 +236,36 @@ comments: true n0.next = n1 ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ## 链表缺点 **链表访问结点效率低。** 上节提到,数组可以在 $O(1)$ 时间下访问任意元素,但链表无法直接访问任意结点。这是因为计算机需要从头结点出发,一个一个地向后遍历到目标结点。例如,倘若想要访问链表索引为 `index` (即第 `index + 1` 个)的结点,那么需要 `index` 次访问操作。 @@ -220,6 +310,36 @@ comments: true return head ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + **链表的内存占用多。** 链表以结点为单位,每个结点除了保存值外,还需额外保存指针(引用)。这意味着同样数据量下,链表比数组需要占用更多内存空间。 ## 链表常用操作 @@ -272,6 +392,36 @@ comments: true return -1 ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ## 常见链表类型 **单向链表。** 即上述介绍的普通链表。单向链表的结点有「值」和指向下一结点的「指针(引用)」两项数据。我们将首个结点称为头结点,尾结点指向 `null` 。 @@ -315,6 +465,36 @@ comments: true self.prev = None # 指向前驱结点的指针(引用) ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ![linkedlist_common_types](linked_list.assets/linkedlist_common_types.png)

Fig. 常见链表类型

diff --git a/docs/chapter_array_and_linkedlist/list.md b/docs/chapter_array_and_linkedlist/list.md index db9bdbf..ebff387 100644 --- a/docs/chapter_array_and_linkedlist/list.md +++ b/docs/chapter_array_and_linkedlist/list.md @@ -35,6 +35,36 @@ comments: true list = [1, 3, 2, 5, 4] ``` +=== "Go" + + ```go title="list.go" + + ``` + +=== "JavaScript" + + ```js title="list.js" + + ``` + +=== "TypeScript" + + ```typescript title="list.ts" + + ``` + +=== "C" + + ```c title="list.c" + + ``` + +=== "C#" + + ```csharp title="list.cs" + + ``` + **访问与更新元素。** 列表的底层数据结构是数组,因此可以在 $O(1)$ 时间内访问与更新元素,效率很高。 === "Java" @@ -67,6 +97,36 @@ comments: true list[1] = 0 # 将索引 1 处的元素更新为 0 ``` +=== "Go" + + ```go title="list.go" + + ``` + +=== "JavaScript" + + ```js title="list.js" + + ``` + +=== "TypeScript" + + ```typescript title="list.ts" + + ``` + +=== "C" + + ```c title="list.c" + + ``` + +=== "C#" + + ```csharp title="list.cs" + + ``` + **在列表中添加、插入、删除元素。** 相对于数组,列表可以自由地添加与删除元素。在列表尾部添加元素的时间复杂度为 $O(1)$ ,但是插入与删除元素的效率仍与数组一样低,时间复杂度为 $O(N)$ 。 === "Java" @@ -129,6 +189,36 @@ comments: true list.pop(3) # 删除索引 3 处的元素 ``` +=== "Go" + + ```go title="list.go" + + ``` + +=== "JavaScript" + + ```js title="list.js" + + ``` + +=== "TypeScript" + + ```typescript title="list.ts" + + ``` + +=== "C" + + ```c title="list.c" + + ``` + +=== "C#" + + ```csharp title="list.cs" + + ``` + **遍历列表。** 与数组一样,列表可以使用索引遍历,也可以使用 `for-each` 直接遍历。 === "Java" @@ -177,6 +267,36 @@ comments: true count += 1 ``` +=== "Go" + + ```go title="list.go" + + ``` + +=== "JavaScript" + + ```js title="list.js" + + ``` + +=== "TypeScript" + + ```typescript title="list.ts" + + ``` + +=== "C" + + ```c title="list.c" + + ``` + +=== "C#" + + ```csharp title="list.cs" + + ``` + **拼接两个列表。** 再创建一个新列表 `list1` ,我们可以将其中一个列表拼接到另一个的尾部。 === "Java" @@ -204,6 +324,36 @@ comments: true list += list1 # 将列表 list1 拼接到 list 之后 ``` +=== "Go" + + ```go title="list.go" + + ``` + +=== "JavaScript" + + ```js title="list.js" + + ``` + +=== "TypeScript" + + ```typescript title="list.ts" + + ``` + +=== "C" + + ```c title="list.c" + + ``` + +=== "C#" + + ```csharp title="list.cs" + + ``` + **排序列表。** 排序也是常用的方法之一,完成列表排序后,我们就可以使用在数组类算法题中经常考察的「二分查找」和「双指针」算法了。 === "Java" @@ -227,6 +377,36 @@ comments: true list.sort() # 排序后,列表元素从小到大排列 ``` +=== "Go" + + ```go title="list.go" + + ``` + +=== "JavaScript" + + ```js title="list.js" + + ``` + +=== "TypeScript" + + ```typescript title="list.ts" + + ``` + +=== "C" + + ```c title="list.c" + + ``` + +=== "C#" + + ```csharp title="list.cs" + + ``` + ## 列表简易实现 * 为了帮助加深对列表的理解,我们在此提供一个列表的简易版本的实现。需要关注三个核心点: @@ -491,3 +671,33 @@ comments: true # 更新列表容量 self.__capacity = len(self.__nums) ``` + +=== "Go" + + ```go title="my_list.go" + + ``` + +=== "JavaScript" + + ```js title="my_list.js" + + ``` + +=== "TypeScript" + + ```typescript title="my_list.ts" + + ``` + +=== "C" + + ```c title="my_list.c" + + ``` + +=== "C#" + + ```csharp title="my_list.cs" + + ``` diff --git a/docs/chapter_computational_complexity/space_complexity.md b/docs/chapter_computational_complexity/space_complexity.md index 9bd24e1..eda9013 100644 --- a/docs/chapter_computational_complexity/space_complexity.md +++ b/docs/chapter_computational_complexity/space_complexity.md @@ -99,6 +99,36 @@ comments: true return a + b + c # 输出数据 ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ## 推算方法 空间复杂度的推算方法和时间复杂度总体类似,只是从统计 “计算操作数量” 变为统计 “使用空间大小” 。与时间复杂度不同的是,**我们一般只关注「最差空间复杂度」**。这是因为内存空间是一个硬性要求,我们必须保证在所有输入数据下都有足够的内存空间预留。 @@ -140,6 +170,36 @@ comments: true nums = [0] * n # O(n) ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + **在递归函数中,需要注意统计栈帧空间。** 例如函数 `loop()`,在循环中调用了 $n$ 次 `function()` ,每轮中的 `function()` 都返回并释放了栈帧空间,因此空间复杂度仍为 $O(1)$ 。而递归函数 `recur()` 在运行中会同时存在 $n$ 个未返回的 `recur()` ,从而使用 $O(n)$ 的栈帧空间。 === "Java" @@ -200,6 +260,36 @@ comments: true return recur(n - 1) ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ## 常见类型 设输入数据大小为 $n$ ,常见的空间复杂度类型有(从低到高排列) @@ -284,6 +374,36 @@ $$ function() ``` +=== "Go" + + ```go title="space_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="space_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="space_complexity_types.ts" + + ``` + +=== "C" + + ```c title="space_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="space_complexity_types.cs" + + ``` + ### 线性阶 $O(n)$ 线性阶常见于元素数量与 $n$ 成正比的数组、链表、栈、队列等。 @@ -341,6 +461,36 @@ $$ mapp[i] = str(i) ``` +=== "Go" + + ```go title="space_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="space_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="space_complexity_types.ts" + + ``` + +=== "C" + + ```c title="space_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="space_complexity_types.cs" + + ``` + 以下递归函数会同时存在 $n$ 个未返回的 `algorithm()` 函数,使用 $O(n)$ 大小的栈帧空间。 === "Java" @@ -375,6 +525,36 @@ $$ linearRecur(n - 1) ``` +=== "Go" + + ```go title="space_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="space_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="space_complexity_types.ts" + + ``` + +=== "C" + + ```c title="space_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="space_complexity_types.cs" + + ``` + ![space_complexity_recursive_linear](space_complexity.assets/space_complexity_recursive_linear.png)

Fig. 递归函数产生的线性阶空间复杂度

@@ -428,6 +608,36 @@ $$ num_matrix = [[0] * n for _ in range(n)] ``` +=== "Go" + + ```go title="space_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="space_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="space_complexity_types.ts" + + ``` + +=== "C" + + ```c title="space_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="space_complexity_types.cs" + + ``` + 在以下递归函数中,同时存在 $n$ 个未返回的 `algorihtm()` ,并且每个函数中都初始化了一个数组,长度分别为 $n, n-1, n-2, ..., 2, 1$ ,平均长度为 $\frac{n}{2}$ ,因此总体使用 $O(n^2)$ 空间。 === "Java" @@ -465,6 +675,36 @@ $$ return quadratic_recur(n - 1) ``` +=== "Go" + + ```go title="space_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="space_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="space_complexity_types.ts" + + ``` + +=== "C" + + ```c title="space_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="space_complexity_types.cs" + + ``` + ![space_complexity_recursive_quadratic](space_complexity.assets/space_complexity_recursive_quadratic.png)

Fig. 递归函数产生的平方阶空间复杂度

@@ -511,6 +751,36 @@ $$ return root ``` +=== "Go" + + ```go title="space_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="space_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="space_complexity_types.ts" + + ``` + +=== "C" + + ```c title="space_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="space_complexity_types.cs" + + ``` + ![space_complexity_exponential](space_complexity.assets/space_complexity_exponential.png)

Fig. 满二叉树下的指数阶空间复杂度

diff --git a/docs/chapter_computational_complexity/space_time_tradeoff.md b/docs/chapter_computational_complexity/space_time_tradeoff.md index 8e778f8..da1f720 100644 --- a/docs/chapter_computational_complexity/space_time_tradeoff.md +++ b/docs/chapter_computational_complexity/space_time_tradeoff.md @@ -20,7 +20,7 @@ comments: true === "Java" - ```java title="" title="leetcode_two_sum.java" + ```java title="leetcode_two_sum.java" class SolutionBruteForce { public int[] twoSum(int[] nums, int target) { int size = nums.length; @@ -85,6 +85,30 @@ comments: true } ``` +=== "JavaScript" + + ```js title="leetcode_two_sum.js" + + ``` + +=== "TypeScript" + + ```typescript title="leetcode_two_sum.ts" + + ``` + +=== "C" + + ```c title="leetcode_two_sum.c" + + ``` + +=== "C#" + + ```csharp title="leetcode_two_sum.cs" + + ``` + ### 方法二:辅助哈希表 时间复杂度 $O(N)$ ,空间复杂度 $O(N)$ ,属于「空间换时间」。 @@ -93,7 +117,7 @@ comments: true === "Java" - ```java title="" title="leetcode_two_sum.java" + ```java title="leetcode_two_sum.java" class SolutionHashMap { public int[] twoSum(int[] nums, int target) { int size = nums.length; @@ -163,3 +187,27 @@ comments: true return nil } ``` + +=== "JavaScript" + + ```js title="leetcode_two_sum.js" + + ``` + +=== "TypeScript" + + ```typescript title="leetcode_two_sum.ts" + + ``` + +=== "C" + + ```c title="leetcode_two_sum.c" + + ``` + +=== "C#" + + ```csharp title="leetcode_two_sum.cs" + + ``` diff --git a/docs/chapter_computational_complexity/time_complexity.md b/docs/chapter_computational_complexity/time_complexity.md index ed11975..df0ea51 100644 --- a/docs/chapter_computational_complexity/time_complexity.md +++ b/docs/chapter_computational_complexity/time_complexity.md @@ -61,6 +61,36 @@ $$ print(0) # 5 ns ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + 但实际上, **统计算法的运行时间既不合理也不现实。** 首先,我们不希望预估时间和运行平台绑定,毕竟算法需要跑在各式各样的平台之上。其次,我们很难获知每一种操作的运行时间,这为预估过程带来了极大的难度。 ## 统计时间增长趋势 @@ -131,6 +161,36 @@ $$ print(0) ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ![time_complexity_first_example](time_complexity.assets/time_complexity_first_example.png)

Fig. 算法 A, B, C 的时间增长趋势

@@ -192,6 +252,36 @@ $$ } ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + $T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」,代表函数 $T(n)$ 的「渐进上界 asymptotic upper bound」。 @@ -296,6 +386,36 @@ $$ print(0) ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ### 2. 判断渐进上界 **时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将处于主导作用,其它项的影响都可以被忽略。 @@ -341,7 +461,7 @@ $$ === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 常数阶 */ int constant(int n) { int count = 0; @@ -377,13 +497,43 @@ $$ return count ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ### 线性阶 $O(n)$ 线性阶的操作数量相对输入数据大小成线性级别增长。线性阶常出现于单层循环。 === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 线性阶 */ int linear(int n) { int count = 0; @@ -416,6 +566,36 @@ $$ return count ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + 「遍历数组」和「遍历链表」等操作,时间复杂度都为 $O(n)$ ,其中 $n$ 为数组或链表的长度。 !!! tip @@ -424,7 +604,7 @@ $$ === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 线性阶(遍历数组) */ int arrayTraversal(int[] nums) { int count = 0; @@ -462,13 +642,43 @@ $$ return count ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ### 平方阶 $O(n^2)$ 平方阶的操作数量相对输入数据大小成平方级别增长。平方阶常出现于嵌套循环,外层循环和内层循环都为 $O(n)$ ,总体为 $O(n^2)$ 。 === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 平方阶 */ int quadratic(int n) { int count = 0; @@ -511,6 +721,36 @@ $$ return count ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ![time_complexity_constant_linear_quadratic](time_complexity.assets/time_complexity_constant_linear_quadratic.png)

Fig. 常数阶、线性阶、平方阶的时间复杂度

@@ -523,7 +763,7 @@ $$ === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 平方阶(冒泡排序) */ int bubbleSort(int[] nums) { int count = 0; // 计数器 @@ -586,6 +826,36 @@ $$ return count ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ### 指数阶 $O(2^n)$ !!! note @@ -596,7 +866,7 @@ $$ === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 指数阶(循环实现) */ int exponential(int n) { int count = 0, base = 1; @@ -645,6 +915,36 @@ $$ return count ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ![time_complexity_exponential](time_complexity.assets/time_complexity_exponential.png)

Fig. 指数阶的时间复杂度

@@ -653,7 +953,7 @@ $$ === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 指数阶(递归实现) */ int expRecur(int n) { if (n == 1) return 1; @@ -680,6 +980,36 @@ $$ return exp_recur(n - 1) + exp_recur(n - 1) + 1 ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ### 对数阶 $O(\log n)$ 对数阶与指数阶正好相反,后者反映 “每轮增加到两倍的情况” ,而前者反映 “每轮缩减到一半的情况” 。对数阶仅次于常数阶,时间增长的很慢,是理想的时间复杂度。 @@ -690,7 +1020,7 @@ $$ === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 对数阶(循环实现) */ int logarithmic(float n) { int count = 0; @@ -728,6 +1058,36 @@ $$ return count ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ![time_complexity_logarithmic](time_complexity.assets/time_complexity_logarithmic.png)

Fig. 对数阶的时间复杂度

@@ -736,7 +1096,7 @@ $$ === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 对数阶(递归实现) */ int logRecur(float n) { if (n <= 1) return 0; @@ -763,6 +1123,36 @@ $$ return log_recur(n / 2) + 1 ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ### 线性对数阶 $O(n \log n)$ 线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。 @@ -771,7 +1161,7 @@ $$ === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 线性对数阶 */ int linearLogRecur(float n) { if (n <= 1) return 1; @@ -812,6 +1202,36 @@ $$ return count ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ![time_complexity_logarithmic_linear](time_complexity.assets/time_complexity_logarithmic_linear.png)

Fig. 线性对数阶的时间复杂度

@@ -828,7 +1248,7 @@ $$ === "Java" - ```java title="" title="time_complexity_types.java" + ```java title="time_complexity_types.java" /* 阶乘阶(递归实现) */ int factorialRecur(int n) { if (n == 0) return 1; @@ -869,6 +1289,36 @@ $$ return count ``` +=== "Go" + + ```go title="time_complexity_types.go" + + ``` + +=== "JavaScript" + + ```js title="time_complexity_types.js" + + ``` + +=== "TypeScript" + + ```typescript title="time_complexity_types.ts" + + ``` + +=== "C" + + ```c title="time_complexity_types.c" + + ``` + +=== "C#" + + ```csharp title="time_complexity_types.cs" + + ``` + ![time_complexity_factorial](time_complexity.assets/time_complexity_factorial.png)

Fig. 阶乘阶的时间复杂度

@@ -884,7 +1334,7 @@ $$ === "Java" - ```java title="" title="worst_best_time_complexity.java" + ```java title="worst_best_time_complexity.java" public class worst_best_time_complexity { /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ static int[] randomNumbers(int n) { @@ -994,6 +1444,36 @@ $$ print("数字 1 的索引为", index) ``` +=== "Go" + + ```go title="worst_best_time_complexity.go" + + ``` + +=== "JavaScript" + + ```js title="worst_best_time_complexity.js" + + ``` + +=== "TypeScript" + + ```typescript title="worst_best_time_complexity.ts" + + ``` + +=== "C" + + ```c title="worst_best_time_complexity.c" + + ``` + +=== "C#" + + ```csharp title="worst_best_time_complexity.cs" + + ``` + !!! tip 我们在实际应用中很少使用「最佳时间复杂度」,因为往往只有很小概率下才能达到,会带来一定的误导性。反之,「最差时间复杂度」最为实用,因为它给出了一个 “效率安全值” ,让我们可以放心地使用算法。 diff --git a/docs/chapter_data_structure/data_and_memory.md b/docs/chapter_data_structure/data_and_memory.md index 5e7da39..198df88 100644 --- a/docs/chapter_data_structure/data_and_memory.md +++ b/docs/chapter_data_structure/data_and_memory.md @@ -46,7 +46,7 @@ comments: true === "Java" - ```java + ```java title="" /* 使用多种「基本数据类型」来初始化「数组」 */ int[] numbers = new int[5]; float[] decimals = new float[5]; @@ -66,6 +66,36 @@ comments: true ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ## 计算机内存 在计算机中,内存和硬盘是两种主要的存储硬件设备。「硬盘」主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。「内存」用于运行程序时暂存数据,速度更快,但容量较小(通常为 GB 级别)。 diff --git a/docs/chapter_searching/binary_search.md b/docs/chapter_searching/binary_search.md index 59b7598..bd3b109 100644 --- a/docs/chapter_searching/binary_search.md +++ b/docs/chapter_searching/binary_search.md @@ -102,6 +102,42 @@ $$ } ``` +=== "Python" + + ```python title="binary_search.py" + + ``` + +=== "Go" + + ```go title="binary_search.go" + + ``` + +=== "JavaScript" + + ```js title="binary_search.js" + + ``` + +=== "TypeScript" + + ```typescript title="binary_search.ts" + + ``` + +=== "C" + + ```c title="binary_search.c" + + ``` + +=== "C#" + + ```csharp title="binary_search.cs" + + ``` + ### “左闭右开” 实现 当然,我们也可以使用 “左闭右开” 的表示方法,写出相同功能的二分查找代码。 @@ -150,6 +186,42 @@ $$ } ``` +=== "Python" + + ```python title="binary_search.py" + + ``` + +=== "Go" + + ```go title="binary_search.go" + + ``` + +=== "JavaScript" + + ```js title="binary_search.js" + + ``` + +=== "TypeScript" + + ```typescript title="binary_search.ts" + + ``` + +=== "C" + + ```c title="binary_search.c" + + ``` + +=== "C#" + + ```csharp title="binary_search.cs" + + ``` + ### 两种表示对比 对比下来,两种表示的代码写法有以下不同点: @@ -171,15 +243,16 @@ $$ === "Java" - ```java + ```java title="" // (i + j) 有可能超出 int 的取值范围 int m = (i + j) / 2; // 更换为此写法则不会越界 int m = i + (j - i) / 2; ``` + === "C++" - ```cpp + ```cpp title="" // (i + j) 有可能超出 int 的取值范围 int m = (i + j) / 2; // 更换为此写法则不会越界 @@ -188,11 +261,41 @@ $$ === "Python" - ```py + ```py title="" # Python 中的数字理论上可以无限大(取决于内存) # 因此无需考虑大数越界问题 ``` +=== "Go" + + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" + + ``` + ## 复杂度分析 **时间复杂度 $O(\log n)$ :** 其中 $n$ 为数组或链表长度;每轮排除一半的区间,因此循环轮数为 $\log_2 n$ ,使用 $O(\log n)$ 时间。 diff --git a/docs/chapter_searching/hashing_search.md b/docs/chapter_searching/hashing_search.md index ce5132c..f269c4e 100644 --- a/docs/chapter_searching/hashing_search.md +++ b/docs/chapter_searching/hashing_search.md @@ -40,6 +40,42 @@ comments: true } ``` +=== "Python" + + ```python title="hashing_search.py" + + ``` + +=== "Go" + + ```go title="hashing_search.go" + + ``` + +=== "JavaScript" + + ```js title="hashing_search.js" + + ``` + +=== "TypeScript" + + ```typescript title="hashing_search.ts" + + ``` + +=== "C" + + ```c title="hashing_search.c" + + ``` + +=== "C#" + + ```csharp title="hashing_search.cs" + + ``` + 再比如,如果我们想要给定一个目标结点值 `target` ,获取对应的链表结点对象,那么也可以使用哈希查找实现。 ![hash_search_listnode](hashing_search.assets/hash_search_listnode.png) @@ -68,6 +104,42 @@ comments: true } ``` +=== "Python" + + ```python title="hashing_search.py" + + ``` + +=== "Go" + + ```go title="hashing_search.go" + + ``` + +=== "JavaScript" + + ```js title="hashing_search.js" + + ``` + +=== "TypeScript" + + ```typescript title="hashing_search.ts" + + ``` + +=== "C" + + ```c title="hashing_search.c" + + ``` + +=== "C#" + + ```csharp title="hashing_search.cs" + + ``` + ## 复杂度分析 **时间复杂度:** $O(1)$ ,哈希表的查找操作使用 $O(1)$ 时间。 diff --git a/docs/chapter_searching/linear_search.md b/docs/chapter_searching/linear_search.md index 5186d19..ba30248 100644 --- a/docs/chapter_searching/linear_search.md +++ b/docs/chapter_searching/linear_search.md @@ -44,6 +44,42 @@ comments: true } ``` +=== "Python" + + ```python title="linear_search.py" + + ``` + +=== "Go" + + ```go title="linear_search.go" + + ``` + +=== "JavaScript" + + ```js title="linear_search.js" + + ``` + +=== "TypeScript" + + ```typescript title="linear_search.ts" + + ``` + +=== "C" + + ```c title="linear_search.c" + + ``` + +=== "C#" + + ```csharp title="linear_search.cs" + + ``` + 再比如,我们想要在给定一个目标结点值 `target` ,返回此结点对象,也可以在链表中进行线性查找。 === "Java" @@ -80,6 +116,42 @@ comments: true } ``` +=== "Python" + + ```python title="linear_search.py" + + ``` + +=== "Go" + + ```go title="linear_search.go" + + ``` + +=== "JavaScript" + + ```js title="linear_search.js" + + ``` + +=== "TypeScript" + + ```typescript title="linear_search.ts" + + ``` + +=== "C" + + ```c title="linear_search.c" + + ``` + +=== "C#" + + ```csharp title="linear_search.cs" + + ``` + ## 复杂度分析 **时间复杂度 $O(n)$ :** 其中 $n$ 为数组或链表长度。 diff --git a/docs/chapter_searching/summary.md b/docs/chapter_searching/summary.md index 6d2fb0b..066d09a 100644 --- a/docs/chapter_searching/summary.md +++ b/docs/chapter_searching/summary.md @@ -1,3 +1,7 @@ +--- +comments: true +--- + # 小结 - 线性查找是一种最基础的查找方法,通过遍历数据结构 + 判断条件实现查找。 diff --git a/docs/chapter_sorting/bubble_sort.md b/docs/chapter_sorting/bubble_sort.md index fe1d071..05ef478 100644 --- a/docs/chapter_sorting/bubble_sort.md +++ b/docs/chapter_sorting/bubble_sort.md @@ -74,26 +74,6 @@ comments: true } ``` -=== "JavaScript" - - ```js title="bubble_sort.js" - /* 冒泡排序 */ - function bubbleSort(nums) { - // 外循环:待排序元素数量为 n-1, n-2, ..., 1 - for (let i = nums.length - 1; i > 0; i--) { - // 内循环:冒泡操作 - for (let j = 0; j < i; j++) { - if (nums[j] > nums[j + 1]) { - // 交换 nums[j] 与 nums[j + 1] - let tmp = nums[j]; - nums[j] = nums[j + 1]; - nums[j + 1] = tmp; - } - } - } - } - ``` - === "C++" ```cpp title="bubble_sort.cpp" @@ -129,6 +109,50 @@ comments: true nums[j], nums[j + 1] = nums[j + 1], nums[j] ``` +=== "Go" + + ```go title="bubble_sort.go" + + ``` + +=== "JavaScript" + + ```js title="bubble_sort.js" + /* 冒泡排序 */ + function bubbleSort(nums) { + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 + for (let i = nums.length - 1; i > 0; i--) { + // 内循环:冒泡操作 + for (let j = 0; j < i; j++) { + if (nums[j] > nums[j + 1]) { + // 交换 nums[j] 与 nums[j + 1] + let tmp = nums[j]; + nums[j] = nums[j + 1]; + nums[j + 1] = tmp; + } + } + } + } + ``` + +=== "TypeScript" + + ```typescript title="bubble_sort.ts" + + ``` + +=== "C" + + ```c title="bubble_sort.c" + + ``` + +=== "C#" + + ```csharp title="bubble_sort.cs" + + ``` + ## 算法特性 **时间复杂度 $O(n^2)$ :** 各轮「冒泡」遍历的数组长度为 $n - 1$ , $n - 2$ , $\cdots$ , $2$ , $1$ 次,求和为 $\frac{(n - 1) n}{2}$ ,因此使用 $O(n^2)$ 时间。 @@ -170,29 +194,6 @@ comments: true } ``` -=== "JavaScript" - - ```js title="bubble_sort.js" - /* 冒泡排序(标志优化)*/ - function bubbleSortWithFlag(nums) { - // 外循环:待排序元素数量为 n-1, n-2, ..., 1 - for (let i = nums.length - 1; i > 0; i--) { - let flag = false; // 初始化标志位 - // 内循环:冒泡操作 - for (let j = 0; j < i; j++) { - if (nums[j] > nums[j + 1]) { - // 交换 nums[j] 与 nums[j + 1] - let tmp = nums[j]; - nums[j] = nums[j + 1]; - nums[j + 1] = tmp; - flag = true; // 记录交换元素 - } - } - if (!flag) break; // 此轮冒泡未交换任何元素,直接跳出 - } - } - ``` - === "C++" ```cpp title="bubble_sort.cpp" @@ -234,3 +235,50 @@ comments: true if not flag: break # 此轮冒泡未交换任何元素,直接跳出 ``` + +=== "Go" + + ```go title="bubble_sort.go" + + ``` + +=== "JavaScript" + + ```js title="bubble_sort.js" + /* 冒泡排序(标志优化)*/ + function bubbleSortWithFlag(nums) { + // 外循环:待排序元素数量为 n-1, n-2, ..., 1 + for (let i = nums.length - 1; i > 0; i--) { + let flag = false; // 初始化标志位 + // 内循环:冒泡操作 + for (let j = 0; j < i; j++) { + if (nums[j] > nums[j + 1]) { + // 交换 nums[j] 与 nums[j + 1] + let tmp = nums[j]; + nums[j] = nums[j + 1]; + nums[j + 1] = tmp; + flag = true; // 记录交换元素 + } + } + if (!flag) break; // 此轮冒泡未交换任何元素,直接跳出 + } + } + ``` + +=== "TypeScript" + + ```typescript title="bubble_sort.ts" + + ``` + +=== "C" + + ```c title="bubble_sort.c" + + ``` + +=== "C#" + + ```csharp title="bubble_sort.cs" + + ``` diff --git a/docs/chapter_sorting/insertion_sort.md b/docs/chapter_sorting/insertion_sort.md index e220c2e..86debc6 100644 --- a/docs/chapter_sorting/insertion_sort.md +++ b/docs/chapter_sorting/insertion_sort.md @@ -42,24 +42,6 @@ comments: true } ``` -=== "JavaScript" - - ```js title="insertion_sort.js" - /* 插入排序 */ - function insertionSort(nums) { - // 外循环:base = nums[1], nums[2], ..., nums[n-1] - for (let i = 1; i < nums.length; i++) { - let base = nums[i], j = i - 1; - // 内循环:将 base 插入到左边的正确位置 - while (j >= 0 && nums[j] > base) { - nums[j + 1] = nums[j]; // 1. 将 nums[j] 向右移动一位 - j--; - } - nums[j + 1] = base; // 2. 将 base 赋值到正确位置 - } - } - ``` - === "C++" ```cpp title="insertion_sort.cpp" @@ -94,6 +76,48 @@ comments: true nums[j + 1] = base # 2. 将 base 赋值到正确位置 ``` +=== "Go" + + ```go title="insertion_sort.go" + + ``` + +=== "JavaScript" + + ```js title="insertion_sort.js" + /* 插入排序 */ + function insertionSort(nums) { + // 外循环:base = nums[1], nums[2], ..., nums[n-1] + for (let i = 1; i < nums.length; i++) { + let base = nums[i], j = i - 1; + // 内循环:将 base 插入到左边的正确位置 + while (j >= 0 && nums[j] > base) { + nums[j + 1] = nums[j]; // 1. 将 nums[j] 向右移动一位 + j--; + } + nums[j + 1] = base; // 2. 将 base 赋值到正确位置 + } + } + ``` + +=== "TypeScript" + + ```typescript title="insertion_sort.ts" + + ``` + +=== "C" + + ```c title="insertion_sort.c" + + ``` + +=== "C#" + + ```csharp title="insertion_sort.cs" + + ``` + ## 算法特性 **时间复杂度 $O(n^2)$ :** 最差情况下,各轮插入操作循环 $n - 1$ , $n-2$ , $\cdots$ , $2$ , $1$ 次,求和为 $\frac{(n - 1) n}{2}$ ,使用 $O(n^2)$ 时间。 diff --git a/docs/chapter_sorting/merge_sort.md b/docs/chapter_sorting/merge_sort.md index 58a48c2..64942f6 100644 --- a/docs/chapter_sorting/merge_sort.md +++ b/docs/chapter_sorting/merge_sort.md @@ -103,51 +103,6 @@ comments: true } ``` -=== "JavaScript" - - ```js title="merge_sort.js" - /** - * 合并左子数组和右子数组 - * 左子数组区间 [left, mid] - * 右子数组区间 [mid + 1, right] - */ - function merge(nums, left, mid, right) { - // 初始化辅助数组 - let tmp = nums.slice(left, right + 1); - // 左子数组的起始索引和结束索引 - let leftStart = left - left, leftEnd = mid - left; - // 右子数组的起始索引和结束索引 - let rightStart = mid + 1 - left, rightEnd = right - left; - // i, j 分别指向左子数组、右子数组的首元素 - let i = leftStart, j = rightStart; - // 通过覆盖原数组 nums 来合并左子数组和右子数组 - for (let k = left; k <= right; k++) { - // 若 “左子数组已全部合并完”,则选取右子数组元素,并且 j++ - if (i > leftEnd) { - nums[k] = tmp[j++]; - // 否则,若 “右子数组已全部合并完” 或 “左子数组元素 < 右子数组元素”,则选取左子数组元素,并且 i++ - } else if (j > rightEnd || tmp[i] <= tmp[j]) { - nums[k] = tmp[i++]; - // 否则,若 “左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++ - } else { - nums[k] = tmp[j++]; - } - } - } - - /* 归并排序 */ - function mergeSort(nums, left, right) { - // 终止条件 - if (left >= right) return; // 当子数组长度为 1 时终止递归 - // 划分阶段 - let mid = Math.floor((left + right) / 2); // 计算中点 - mergeSort(nums, left, mid); // 递归左子数组 - mergeSort(nums, mid + 1, right); // 递归右子数组 - // 合并阶段 - merge(nums, left, mid, right); - } - ``` - === "C++" ```cpp title="merge_sort.cpp" @@ -237,6 +192,75 @@ comments: true merge(nums, left, mid, right) ``` +=== "Go" + + ```go title="merge_sort.go" + + ``` + +=== "JavaScript" + + ```js title="merge_sort.js" + /** + * 合并左子数组和右子数组 + * 左子数组区间 [left, mid] + * 右子数组区间 [mid + 1, right] + */ + function merge(nums, left, mid, right) { + // 初始化辅助数组 + let tmp = nums.slice(left, right + 1); + // 左子数组的起始索引和结束索引 + let leftStart = left - left, leftEnd = mid - left; + // 右子数组的起始索引和结束索引 + let rightStart = mid + 1 - left, rightEnd = right - left; + // i, j 分别指向左子数组、右子数组的首元素 + let i = leftStart, j = rightStart; + // 通过覆盖原数组 nums 来合并左子数组和右子数组 + for (let k = left; k <= right; k++) { + // 若 “左子数组已全部合并完”,则选取右子数组元素,并且 j++ + if (i > leftEnd) { + nums[k] = tmp[j++]; + // 否则,若 “右子数组已全部合并完” 或 “左子数组元素 < 右子数组元素”,则选取左子数组元素,并且 i++ + } else if (j > rightEnd || tmp[i] <= tmp[j]) { + nums[k] = tmp[i++]; + // 否则,若 “左子数组元素 > 右子数组元素”,则选取右子数组元素,并且 j++ + } else { + nums[k] = tmp[j++]; + } + } + } + + /* 归并排序 */ + function mergeSort(nums, left, right) { + // 终止条件 + if (left >= right) return; // 当子数组长度为 1 时终止递归 + // 划分阶段 + let mid = Math.floor((left + right) / 2); // 计算中点 + mergeSort(nums, left, mid); // 递归左子数组 + mergeSort(nums, mid + 1, right); // 递归右子数组 + // 合并阶段 + merge(nums, left, mid, right); + } + ``` + +=== "TypeScript" + + ```typescript title="merge_sort.ts" + + ``` + +=== "C" + + ```c title="merge_sort.c" + + ``` + +=== "C#" + + ```csharp title="merge_sort.cs" + + ``` + 下面重点解释一下合并方法 `merge()` 的流程: 1. 初始化一个辅助数组 `tmp` 暂存待合并区间 `[left, right]` 内的元素,后续通过覆盖原数组 `nums` 的元素来实现合并; diff --git a/docs/chapter_sorting/quick_sort.md b/docs/chapter_sorting/quick_sort.md index a0df18e..7934b59 100644 --- a/docs/chapter_sorting/quick_sort.md +++ b/docs/chapter_sorting/quick_sort.md @@ -61,35 +61,6 @@ comments: true } ``` -=== "JavaScript" - - ``` js title="quick_sort.js" - /* 元素交换 */ - function swap(nums, i, j) { - let tmp = nums[i] - nums[i] = nums[j] - nums[j] = tmp - } - - /* 哨兵划分 */ - function partition(nums, left, right){ - // 以 nums[left] 作为基准数 - let i = left, j = right - while(i < j){ - while(i < j && nums[j] >= nums[left]){ - j -= 1 // 从右向左找首个小于基准数的元素 - } - while(i < j && nums[i] <= nums[left]){ - i += 1 // 从左向右找首个大于基准数的元素 - } - // 元素交换 - swap(nums, i, j) // 交换这两个元素 - } - swap(nums, i, left) // 将基准数交换至两子数组的分界线 - return i // 返回基准数的索引 - } - ``` - === "C++" ```cpp title="quick_sort.cpp" @@ -135,6 +106,59 @@ comments: true return i # 返回基准数的索引 ``` +=== "Go" + + ```go title="quick_sort.go" + + ``` + +=== "JavaScript" + + ``` js title="quick_sort.js" + /* 元素交换 */ + function swap(nums, i, j) { + let tmp = nums[i] + nums[i] = nums[j] + nums[j] = tmp + } + + /* 哨兵划分 */ + function partition(nums, left, right){ + // 以 nums[left] 作为基准数 + let i = left, j = right + while(i < j){ + while(i < j && nums[j] >= nums[left]){ + j -= 1 // 从右向左找首个小于基准数的元素 + } + while(i < j && nums[i] <= nums[left]){ + i += 1 // 从左向右找首个大于基准数的元素 + } + // 元素交换 + swap(nums, i, j) // 交换这两个元素 + } + swap(nums, i, left) // 将基准数交换至两子数组的分界线 + return i // 返回基准数的索引 + } + ``` + +=== "TypeScript" + + ```typescript title="quick_sort.ts" + + ``` + +=== "C" + + ```c title="quick_sort.c" + + ``` + +=== "C#" + + ```csharp title="quick_sort.cs" + + ``` + !!! note "快速排序的分治思想" 哨兵划分的实质是将 **一个长数组的排序问题** 简化为 **两个短数组的排序问题**。 @@ -167,21 +191,6 @@ comments: true } ``` -=== "JavaScript" - - ```js title="quick_sort.js" - /* 快速排序 */ - function quickSort(nums, left, right){ - // 子数组长度为 1 时终止递归 - if(left >= right) return - // 哨兵划分 - const pivot = partition(nums, left, right) - // 递归左子数组、右子数组 - quick_sort(nums, left, pivot - 1) - quick_sort(nums, pivot + 1, right) - } - ``` - === "C++" ```cpp title="quick_sort.cpp" @@ -213,6 +222,45 @@ comments: true self.quick_sort(nums, pivot + 1, right) ``` +=== "Go" + + ```go title="quick_sort.go" + + ``` + +=== "JavaScript" + + ```js title="quick_sort.js" + /* 快速排序 */ + function quickSort(nums, left, right){ + // 子数组长度为 1 时终止递归 + if(left >= right) return + // 哨兵划分 + const pivot = partition(nums, left, right) + // 递归左子数组、右子数组 + quick_sort(nums, left, pivot - 1) + quick_sort(nums, pivot + 1, right) + } + ``` + +=== "TypeScript" + + ```typescript title="quick_sort.ts" + + ``` + +=== "C" + + ```c title="quick_sort.c" + + ``` + +=== "C#" + + ```csharp title="quick_sort.cs" + + ``` + ## 算法特性 **平均时间复杂度 $O(n \log n)$ :** 平均情况下,哨兵划分的递归层数为 $\log n$ ,每层中的总循环数为 $n$ ,总体使用 $O(n \log n)$ 时间。 @@ -269,32 +317,6 @@ comments: true } ``` -=== "JavaScript" - - ```js title="quick_sort.js" - /* 选取三个元素的中位数 */ - function medianThree(nums, left, mid, right) { - // 使用了异或操作来简化代码 - // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1 - if ((nums[left] > nums[mid]) ^ (nums[left] > nums[right])) - return left; - else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right])) - return mid; - else - return right; - } - - /* 哨兵划分(三数取中值) */ - function partition(nums, left, right) { - // 选取三个候选元素的中位数 - let med = medianThree(nums, left, Math.floor((left + right) / 2), right); - // 将中位数交换至数组最左端 - swap(nums, left, med); - // 以 nums[left] 作为基准数 - // 下同省略... - } - ``` - === "C++" ```cpp title="quick_sort.cpp" @@ -344,6 +366,56 @@ comments: true # 下同省略... ``` +=== "Go" + + ```go title="quick_sort.go" + + ``` + +=== "JavaScript" + + ```js title="quick_sort.js" + /* 选取三个元素的中位数 */ + function medianThree(nums, left, mid, right) { + // 使用了异或操作来简化代码 + // 异或规则为 0 ^ 0 = 1 ^ 1 = 0, 0 ^ 1 = 1 ^ 0 = 1 + if ((nums[left] > nums[mid]) ^ (nums[left] > nums[right])) + return left; + else if ((nums[mid] < nums[left]) ^ (nums[mid] < nums[right])) + return mid; + else + return right; + } + + /* 哨兵划分(三数取中值) */ + function partition(nums, left, right) { + // 选取三个候选元素的中位数 + let med = medianThree(nums, left, Math.floor((left + right) / 2), right); + // 将中位数交换至数组最左端 + swap(nums, left, med); + // 以 nums[left] 作为基准数 + // 下同省略... + } + ``` + +=== "TypeScript" + + ```typescript title="quick_sort.ts" + + ``` + +=== "C" + + ```c title="quick_sort.c" + + ``` + +=== "C#" + + ```csharp title="quick_sort.cs" + + ``` + ## 尾递归优化 **普通快速排序在某些输入下的空间效率变差。** 仍然以完全倒序的输入数组为例,由于每轮哨兵划分后右子数组长度为 0 ,那么将形成一个高度为 $n - 1$ 的递归树,此时使用的栈帧空间大小劣化至 $O(n)$ 。 @@ -371,27 +443,6 @@ comments: true } ``` -=== "JavaScript" - - ```js title="quick_sort.js" - /* 快速排序(尾递归优化) */ - quickSort(nums, left, right) { - // 子数组长度为 1 时终止 - while (left < right) { - // 哨兵划分操作 - let pivot = partition(nums, left, right); - // 对两个子数组中较短的那个执行快排 - if (pivot - left < right - pivot) { - quickSort(nums, left, pivot - 1); // 递归排序左子数组 - left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right] - } else { - quickSort(nums, pivot + 1, right); // 递归排序右子数组 - right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1] - } - } - } - ``` - === "C++" ```cpp title="quick_sort.cpp" @@ -430,3 +481,48 @@ comments: true self.quick_sort(nums, pivot + 1, right) # 递归排序右子数组 right = pivot - 1 # 剩余待排序区间为 [left, pivot - 1] ``` + +=== "Go" + + ```go title="quick_sort.go" + + ``` + +=== "JavaScript" + + ```js title="quick_sort.js" + /* 快速排序(尾递归优化) */ + quickSort(nums, left, right) { + // 子数组长度为 1 时终止 + while (left < right) { + // 哨兵划分操作 + let pivot = partition(nums, left, right); + // 对两个子数组中较短的那个执行快排 + if (pivot - left < right - pivot) { + quickSort(nums, left, pivot - 1); // 递归排序左子数组 + left = pivot + 1; // 剩余待排序区间为 [pivot + 1, right] + } else { + quickSort(nums, pivot + 1, right); // 递归排序右子数组 + right = pivot - 1; // 剩余待排序区间为 [left, pivot - 1] + } + } + } + ``` + +=== "TypeScript" + + ```typescript title="quick_sort.ts" + + ``` + +=== "C" + + ```c title="quick_sort.c" + + ``` + +=== "C#" + + ```csharp title="quick_sort.cs" + + ``` diff --git a/docs/chapter_stack_and_queue/deque.md b/docs/chapter_stack_and_queue/deque.md index f9b45ec..2ed2f28 100644 --- a/docs/chapter_stack_and_queue/deque.md +++ b/docs/chapter_stack_and_queue/deque.md @@ -116,3 +116,33 @@ comments: true """ 判断双向队列是否为空 """ is_empty = len(duque) == 0 ``` + +=== "Go" + + ```go title="deque.go" + + ``` + +=== "JavaScript" + + ```js title="deque.js" + + ``` + +=== "TypeScript" + + ```typescript title="deque.ts" + + ``` + +=== "C" + + ```c title="deque.c" + + ``` + +=== "C#" + + ```csharp title="deque.cs" + + ``` diff --git a/docs/chapter_stack_and_queue/queue.md b/docs/chapter_stack_and_queue/queue.md index 825b58e..f443f21 100644 --- a/docs/chapter_stack_and_queue/queue.md +++ b/docs/chapter_stack_and_queue/queue.md @@ -112,6 +112,36 @@ comments: true is_empty = len(que) == 0 ``` +=== "Go" + + ```go title="queue.go" + + ``` + +=== "JavaScript" + + ```js title="queue.js" + + ``` + +=== "TypeScript" + + ```typescript title="queue.ts" + + ``` + +=== "C" + + ```c title="queue.c" + + ``` + +=== "C#" + + ```csharp title="queue.cs" + + ``` + ## 队列实现 队列需要一种可以在一端添加,并在另一端删除的数据结构,也可以使用链表或数组来实现。 @@ -276,6 +306,36 @@ comments: true return self.__front.val ``` +=== "Go" + + ```go title="linkedlist_queue.go" + + ``` + +=== "JavaScript" + + ```js title="linkedlist_queue.js" + + ``` + +=== "TypeScript" + + ```typescript title="linkedlist_queue.ts" + + ``` + +=== "C" + + ```c title="linkedlist_queue.c" + + ``` + +=== "C#" + + ```csharp title="linkedlist_queue.cs" + + ``` + ### 基于数组的实现 数组的删除首元素的时间复杂度为 $O(n)$ ,因此不适合直接用来实现队列。然而,我们可以借助两个指针 `front` , `rear` 来分别记录队首和队尾的索引位置,在入队 / 出队时分别将 `front` / `rear` 向后移动一位即可,这样每次仅需操作一个元素,时间复杂度降至 $O(1)$ 。 @@ -477,6 +537,36 @@ comments: true return res ``` +=== "Go" + + ```go title="array_queue.go" + + ``` + +=== "JavaScript" + + ```js title="array_queue.js" + + ``` + +=== "TypeScript" + + ```typescript title="array_queue.ts" + + ``` + +=== "C" + + ```c title="array_queue.c" + + ``` + +=== "C#" + + ```csharp title="array_queue.cs" + + ``` + ## 队列典型应用 - **淘宝订单。** 购物者下单后,订单就被加入到队列之中,随后系统再根据顺序依次处理队列中的订单。在双十一时,在短时间内会产生海量的订单,如何处理「高并发」则是工程师们需要重点思考的问题。 diff --git a/docs/chapter_stack_and_queue/stack.md b/docs/chapter_stack_and_queue/stack.md index 9991c51..c2a1ad1 100644 --- a/docs/chapter_stack_and_queue/stack.md +++ b/docs/chapter_stack_and_queue/stack.md @@ -112,6 +112,36 @@ comments: true is_empty = len(stack) == 0 ``` +=== "Go" + + ```go title="stack.go" + + ``` + +=== "JavaScript" + + ```js title="stack.js" + + ``` + +=== "TypeScript" + + ```typescript title="stack.ts" + + ``` + +=== "C" + + ```c title="stack.c" + + ``` + +=== "C#" + + ```csharp title="stack.cs" + + ``` + ## 栈的实现 为了更加清晰地了解栈的运行机制,接下来我们来自己动手实现一个栈类。 @@ -249,6 +279,36 @@ comments: true return self.__peek.val ``` +=== "Go" + + ```go title="linkedlist_stack.go" + + ``` + +=== "JavaScript" + + ```js title="linkedlist_stack.js" + + ``` + +=== "TypeScript" + + ```typescript title="linkedlist_stack.ts" + + ``` + +=== "C" + + ```c title="linkedlist_stack.c" + + ``` + +=== "C#" + + ```csharp title="linkedlist_stack.cs" + + ``` + ### 基于数组的实现 使用「数组」实现栈时,将数组的尾部当作栈顶。准确地说,我们需要使用「列表」,因为入栈的元素可能是源源不断的,因此使用动态数组可以方便扩容。 @@ -363,6 +423,36 @@ comments: true return self.__stack[index] ``` +=== "Go" + + ```go title="array_stack.go" + + ``` + +=== "JavaScript" + + ```js title="array_stack.js" + + ``` + +=== "TypeScript" + + ```typescript title="array_stack.ts" + + ``` + +=== "C" + + ```c title="array_stack.c" + + ``` + +=== "C#" + + ```csharp title="array_stack.cs" + + ``` + !!! tip 实际编程中,我们一般直接将 `ArrayList` 或 `LinkedList` 当作「栈」来使用。我们仅需通过脑补来屏蔽无关操作,而不用专门去包装它。 diff --git a/docs/chapter_tree/binary_search_tree.md b/docs/chapter_tree/binary_search_tree.md index 8b0f9ba..a1554e9 100644 --- a/docs/chapter_tree/binary_search_tree.md +++ b/docs/chapter_tree/binary_search_tree.md @@ -91,6 +91,30 @@ comments: true ``` +=== "JavaScript" + + ```js title="binary_search_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="binary_search_tree.ts" + + ``` + +=== "C" + + ```c title="binary_search_tree.c" + + ``` + +=== "C#" + + ```csharp title="binary_search_tree.cs" + + ``` + ### 插入结点 给定一个待插入元素 `num` ,为了保持二叉搜索树 “左子树 < 根结点 < 右子树” 的性质,插入操作分为两步: @@ -166,6 +190,30 @@ comments: true ``` +=== "JavaScript" + + ```js title="binary_search_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="binary_search_tree.ts" + + ``` + +=== "C" + + ```c title="binary_search_tree.c" + + ``` + +=== "C#" + + ```csharp title="binary_search_tree.cs" + + ``` + 为了插入结点,需要借助 **辅助结点 `prev`** 保存上一轮循环的结点,这样在遍历到 $\text{null}$ 时,我们也可以获取到其父结点,从而完成结点插入操作。 与查找结点相同,插入结点使用 $O(\log n)$ 时间。 @@ -320,6 +368,30 @@ comments: true ``` +=== "JavaScript" + + ```js title="binary_search_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="binary_search_tree.ts" + + ``` + +=== "C" + + ```c title="binary_search_tree.c" + + ``` + +=== "C#" + + ```csharp title="binary_search_tree.cs" + + ``` + ## 二叉搜索树的优势 假设给定 $n$ 个数字,最常用的存储方式是「数组」,那么对于这串乱序的数字,常见操作的效率为: diff --git a/docs/chapter_tree/binary_tree.md b/docs/chapter_tree/binary_tree.md index 58034b1..2fd44c3 100644 --- a/docs/chapter_tree/binary_tree.md +++ b/docs/chapter_tree/binary_tree.md @@ -8,7 +8,7 @@ comments: true === "Java" - ```java + ```java title="" /* 链表结点类 */ class TreeNode { int val; // 结点值 @@ -20,7 +20,7 @@ comments: true === "C++" - ```cpp + ```cpp title="" /* 链表结点结构体 */ struct TreeNode { int val; // 结点值 @@ -32,7 +32,7 @@ comments: true === "Python" - ```python + ```python title="" """ 链表结点类 """ class TreeNode: def __init__(self, val=0, left=None, right=None): @@ -43,7 +43,31 @@ comments: true === "Go" - ```go + ```go title="" + + ``` + +=== "JavaScript" + + ```js title="" + + ``` + +=== "TypeScript" + + ```typescript title="" + + ``` + +=== "C" + + ```c title="" + + ``` + +=== "C#" + + ```csharp title="" ``` @@ -142,6 +166,30 @@ comments: true ``` +=== "JavaScript" + + ```js title="binary_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="binary_tree.ts" + + ``` + +=== "C" + + ```c title="binary_tree.c" + + ``` + +=== "C#" + + ```csharp title="binary_tree.cs" + + ``` + **插入与删除结点。** 与链表类似,插入与删除结点都可以通过修改指针实现。 ![binary_tree_add_remove](binary_tree.assets/binary_tree_add_remove.png) @@ -183,6 +231,30 @@ comments: true ``` +=== "JavaScript" + + ```js title="binary_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="binary_tree.ts" + + ``` + +=== "C" + + ```c title="binary_tree.c" + + ``` + +=== "C#" + + ```csharp title="binary_tree.cs" + + ``` + !!! note 插入结点会改变二叉树的原有逻辑结构,删除结点往往意味着删除了该结点的所有子树。因此,二叉树中的插入与删除一般都是由一套操作配合完成的,这样才能实现有意义的操作。 @@ -259,6 +331,30 @@ comments: true ``` +=== "JavaScript" + + ```js title="binary_tree_bfs.js" + + ``` + +=== "TypeScript" + + ```typescript title="binary_tree_bfs.ts" + + ``` + +=== "C" + + ```c title="binary_tree_bfs.c" + + ``` + +=== "C#" + + ```csharp title="binary_tree_bfs.cs" + + ``` + ### 前序、中序、后序遍历 相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」,其体现着一种 “先走到尽头,再回头继续” 的回溯遍历方式。 @@ -353,6 +449,30 @@ comments: true ``` +=== "JavaScript" + + ```js title="binary_tree_dfs.js" + + ``` + +=== "TypeScript" + + ```typescript title="binary_tree_dfs.ts" + + ``` + +=== "C" + + ```c title="binary_tree_dfs.c" + + ``` + +=== "C#" + + ```csharp title="binary_tree_dfs.cs" + + ``` + !!! note 使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。 diff --git a/docs/chapter_tree/binary_tree_types.md b/docs/chapter_tree/binary_tree_types.md index af0112b..7e1c523 100644 --- a/docs/chapter_tree/binary_tree_types.md +++ b/docs/chapter_tree/binary_tree_types.md @@ -16,7 +16,8 @@ comments: true 完美二叉树的性质有: -- 若树高度 $= h$ ,则结点总数 $= 2^h$ - 1; +- 若树高度 $= h$ ,则结点总数 $= 2^h - 1$; +- (TODO) ## 完全二叉树 @@ -26,7 +27,7 @@ comments: true 完全二叉树有一个很好的性质,可以用「数组」来表示。 -- +- (TODO) ## 完满二叉树 @@ -39,3 +40,5 @@ comments: true **「平衡二叉树 Balanced Binary Tree」,又称「AVL 树」** ,其任意结点的左子树和右子树的高度之差的绝对值 $\leq 1$ 。 ![balanced_binary_tree](binary_tree_types.assets/balanced_binary_tree.png) + +- (TODO)