diff --git a/codes/java/include/TreeNode.java b/codes/java/include/TreeNode.java index 6541064..69aafd5 100755 --- a/codes/java/include/TreeNode.java +++ b/codes/java/include/TreeNode.java @@ -13,6 +13,7 @@ import java.util.*; */ public class TreeNode { public int val; + public int height; public TreeNode left; public TreeNode right; diff --git a/docs/chapter_tree/avl_tree.assets/avl_tree1.png b/docs/chapter_tree/avl_tree.assets/avl_tree1.png deleted file mode 100644 index ef44177..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/avl_tree1.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/avl_tree2.png b/docs/chapter_tree/avl_tree.assets/avl_tree2.png deleted file mode 100644 index 456d19f..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/avl_tree2.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/binary_search_tree1.png b/docs/chapter_tree/avl_tree.assets/binary_search_tree1.png deleted file mode 100644 index aae64da..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/binary_search_tree1.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/binary_search_tree2.png b/docs/chapter_tree/avl_tree.assets/binary_search_tree2.png deleted file mode 100644 index 3d1c5c6..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/binary_search_tree2.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/degradation_from_inserting_node.png b/docs/chapter_tree/avl_tree.assets/degradation_from_inserting_node.png new file mode 100644 index 0000000..60faa77 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/degradation_from_inserting_node.png differ diff --git a/docs/chapter_tree/avl_tree.assets/degradation_from_removing_node.png b/docs/chapter_tree/avl_tree.assets/degradation_from_removing_node.png new file mode 100644 index 0000000..90f1d15 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/degradation_from_removing_node.png differ diff --git a/docs/chapter_tree/avl_tree.assets/left_right_rotate.png b/docs/chapter_tree/avl_tree.assets/left_right_rotate.png new file mode 100644 index 0000000..a5e73ac Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/left_right_rotate.png differ diff --git a/docs/chapter_tree/avl_tree.assets/left_rotate_with_grandchild.png b/docs/chapter_tree/avl_tree.assets/left_rotate_with_grandchild.png new file mode 100644 index 0000000..8384696 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/left_rotate_with_grandchild.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_left_rotate.png b/docs/chapter_tree/avl_tree.assets/right_left_rotate.png new file mode 100644 index 0000000..3e178b8 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_left_rotate.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_step1.png b/docs/chapter_tree/avl_tree.assets/right_rotate_step1.png new file mode 100644 index 0000000..6337ad5 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_step1.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_step2.png b/docs/chapter_tree/avl_tree.assets/right_rotate_step2.png new file mode 100644 index 0000000..108e275 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_step2.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_step3.png b/docs/chapter_tree/avl_tree.assets/right_rotate_step3.png new file mode 100644 index 0000000..7d9c996 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_step3.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_step4.png b/docs/chapter_tree/avl_tree.assets/right_rotate_step4.png new file mode 100644 index 0000000..eccc0f9 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_step4.png differ diff --git a/docs/chapter_tree/avl_tree.assets/right_rotate_with_grandchild.png b/docs/chapter_tree/avl_tree.assets/right_rotate_with_grandchild.png new file mode 100644 index 0000000..a1c80c6 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/right_rotate_with_grandchild.png differ diff --git a/docs/chapter_tree/avl_tree.assets/rotate_left1.png b/docs/chapter_tree/avl_tree.assets/rotate_left1.png deleted file mode 100644 index eeaf90f..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/rotate_left1.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/rotate_left2.png b/docs/chapter_tree/avl_tree.assets/rotate_left2.png deleted file mode 100644 index a8ef320..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/rotate_left2.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/rotate_left3.png b/docs/chapter_tree/avl_tree.assets/rotate_left3.png deleted file mode 100644 index f87a995..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/rotate_left3.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/rotate_left_right1.png b/docs/chapter_tree/avl_tree.assets/rotate_left_right1.png deleted file mode 100644 index 27eaac2..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/rotate_left_right1.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/rotate_left_right2.png b/docs/chapter_tree/avl_tree.assets/rotate_left_right2.png deleted file mode 100644 index b5d71b1..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/rotate_left_right2.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/rotate_left_right3.png b/docs/chapter_tree/avl_tree.assets/rotate_left_right3.png deleted file mode 100644 index a455380..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/rotate_left_right3.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/rotate_left_right4.png b/docs/chapter_tree/avl_tree.assets/rotate_left_right4.png deleted file mode 100644 index 0ea8d40..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/rotate_left_right4.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/rotate_right1.png b/docs/chapter_tree/avl_tree.assets/rotate_right1.png deleted file mode 100644 index 3463c56..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/rotate_right1.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/rotate_right2.png b/docs/chapter_tree/avl_tree.assets/rotate_right2.png deleted file mode 100644 index 49a4c09..0000000 Binary files a/docs/chapter_tree/avl_tree.assets/rotate_right2.png and /dev/null differ diff --git a/docs/chapter_tree/avl_tree.assets/rotation_cases.png b/docs/chapter_tree/avl_tree.assets/rotation_cases.png new file mode 100644 index 0000000..6cd6128 Binary files /dev/null and b/docs/chapter_tree/avl_tree.assets/rotation_cases.png differ diff --git a/docs/chapter_tree/avl_tree.md b/docs/chapter_tree/avl_tree.md index dbbdda3..6e13af6 100644 --- a/docs/chapter_tree/avl_tree.md +++ b/docs/chapter_tree/avl_tree.md @@ -1,323 +1,636 @@ # AVL 树 -## AVL 树起源 +在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 $O(\log n)$ 劣化至 $O(n)$ 。 -在「二叉搜索树」章节中提到,在进行多次插入与删除操作后,二叉搜索树可能会退化为链表。此时所有操作的时间复杂度都会由 $O(\log n)$ 劣化至 $O(n)$ 。如下图所示,执行两步删除结点后,该二叉搜索树就会退化为链表。 +如下图所示,执行两步删除结点后,该二叉搜索树就会退化为链表。 -=== "删除前" - ![binary search tree1](avl_tree.assets/binary_search_tree1.png) -=== "删除后" - ![binary search tree2](avl_tree.assets/binary_search_tree2.png) +![degradation_from_removing_node](avl_tree.assets/degradation_from_removing_node.png) -为了解决这一问题,G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「平衡二叉搜索树」,并以两位作者命名,常被称为「AVL 树」。 +再比如,在以下完美二叉树中插入两个结点后,树严重向左偏斜,查找操作的时间复杂度也随之发生劣化。 -## AVL 树性质 +![degradation_from_inserting_node](avl_tree.assets/degradation_from_inserting_node.png) -「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质。「平衡二叉树」规定树中任意结点左右子树的高度差的绝对值不能超过 1 。本文定义: +G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorithm for the organization of information" 中提出了「AVL 树」。**论文中描述了一系列操作,使得在不断添加与删除结点后,AVL 树仍然不会发生退化**,进而使得各种操作的时间复杂度均能保持在 $O(\log n)$ 级别。 -- 「平衡因子 Balance Factor」为 **左子树的高度减右子树的高度** 。 -- 空树的高度定义为 -1 ,叶结点的高度定义为 0 。 +换言之,在频繁增删查改的使用场景中,AVL 树可始终保持很高的数据增删查改效率,具有很好的应用价值。 -!!! tip +## AVL 树常见术语 - 设「平衡因子」为 $f$ ,则一棵 AVL 树的任意结点的平衡因子满足 $-1 \le f \le 1$ +「AVL 树」既是「二叉搜索树」又是「平衡二叉树」,同时满足这两种二叉树的所有性质,因此又被称为「平衡二叉搜索树」。 -## AVL 树优势 +### 结点高度 -提出 AVL 树的两位大佬的厉害之处在于,**他们设计了一系列操作,使得 AVL 树在不断添加与删除结点后,仍然不会发生退化**,进而使得各种操作的时间复杂度均能保持在 $O(\log n)$ 级别。 +在 AVL 树的操作中,需要获取结点「高度 Height」,所以给 AVL 树的结点类添加 `height` 变量。 -## AVL 树操作 +=== "Java" -### 查找结点 + ```java title="avl_tree.java" + /* AVL 树结点类 */ + class TreeNode { + public int val; // 结点值 + public int height; // 结点高度 + public TreeNode left; // 左子结点 + public TreeNode right; // 右子结点 + public TreeNode(int x) { val = x; } + } + ``` -「 AVL 树」的结点查找操作与「二叉搜索树」一致,在此不再赘述。 +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +「结点高度」是最远叶结点到该结点的距离,即走过的「边」的数量。需要特别注意,**叶结点的高度为 0 ,空结点的高度为 -1** 。我们封装两个工具函数,分别用于获取与更新结点的高度。 + +=== "Java" + + ```java title="avl_tree.java" + /* 获取结点高度 */ + int height(TreeNode node) { + // 空结点高度为 -1 ,叶结点高度为 0 + return node == null ? -1 : node.height; + } + + /* 更新结点高度 */ + void updateHeight(TreeNode node) { + // 结点高度等于最高子树高度 + 1 + node.height = Math.max(height(node.left), height(node.right)) + 1; + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +### 结点平衡因子 + +结点的「平衡因子 Balance Factor」是 **结点的左子树高度减去右子树高度**,并定义空结点的平衡因子为 0 。同样地,我们将获取结点平衡因子封装成函数,以便后续使用。 + +=== "Java" + + ```java title="avl_tree.java" + /* 获取结点平衡因子 */ + public int balanceFactor(TreeNode node) { + // 空结点平衡因子为 0 + if (node == null) return 0; + // 结点平衡因子 = 左子树高度 - 右子树高度 + return height(node.left) - height(node.right); + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +!!! note + + 设平衡因子为 $f$ ,则一棵 AVL 树的任意结点的平衡因子皆满足 $-1 \le f \le 1$ 。 + +## AVL 树旋转 + +AVL 树的独特之处在于「旋转 Rotation」的操作,其可 **在不影响二叉树中序遍历序列的前提下,使失衡结点重新恢复平衡。** 换言之,旋转操作既可以使树保持为「二叉搜索树」,也可以使树重新恢复为「平衡二叉树」。 + +我们将平衡因子的绝对值 $> 1$ 的结点称为「失衡结点」。根据结点的失衡情况,旋转操作分为 **右旋、左旋、先右旋后左旋、先左旋后右旋**,接下来我们来一起来看看它们是如何操作的。 + +### Case 1 - 右旋 + +如下图所示(结点下方为「平衡因子」),从底至顶看,二叉树中首个失衡结点是 **结点 2** 。我们聚焦在以结点 2 为根结点的子树上,将该结点记为 `node` ,将其左子节点记为 `child` ,执行「右旋」操作。完成右旋后,该子树已经恢复平衡,并且仍然为二叉搜索树。 + +=== "Step 1" + ![right_rotate_step1](avl_tree.assets/right_rotate_step1.png) +=== "Step 2" + ![right_rotate_step2](avl_tree.assets/right_rotate_step2.png) +=== "Step 3" + ![right_rotate_step3](avl_tree.assets/right_rotate_step3.png) +=== "Step 4" + ![right_rotate_step4](avl_tree.assets/right_rotate_step4.png) + +进而,如果结点 `child` 本身有右子结点(记为 `grandChild`),则需要在「右旋」中添加一步:将 `grandChild` 作为 `node` 的左子结点。 + +![right_rotate_with_grandchild](avl_tree.assets/right_rotate_with_grandchild.png) + +“向右旋转” 是一种形象化的说法,实际需要通过修改结点指针实现,代码如下所示。 + +=== "Java" + + ```java title="avl_tree.java" + /* 右旋操作 */ + TreeNode rightRotate(TreeNode node) { + TreeNode child = node.left; + TreeNode grandChild = child.right; + // 以 child 为原点,将 node 向右旋转 + child.right = node; + node.left = grandChild; + // 更新结点高度 + updateHeight(node); + updateHeight(child); + // 返回旋转后的根节点 + return child; + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +### Case 2 - 左旋 + +类似地,如果将取上述失衡二叉树的 “镜像” ,那么则需要「左旋」操作。观察发现,**「左旋」和「右旋」操作是镜像对称的,两者对应解决的两种失衡情况也是对称的**,这说明两种旋转操作本质上是一样的。 + +![left_rotate_with_grandchild](avl_tree.assets/left_rotate_with_grandchild.png) + +=== "Java" + + ```java title="avl_tree.java" + /* 左旋操作 */ + private TreeNode leftRotate(TreeNode node) { + TreeNode child = node.right; + TreeNode grandChild = child.left; + // 以 child 为原点,将 node 向左旋转 + child.left = node; + node.right = grandChild; + // 更新结点高度 + updateHeight(node); + updateHeight(child); + // 返回旋转后的根节点 + return child; + } + ``` + +=== "C++" + + ```cpp title="avl_tree.cpp" + + ``` + +=== "Python" + + ```python title="avl_tree.py" + + ``` + +=== "Go" + + ```go title="avl_tree.go" + + ``` + +=== "JavaScript" + + ```js title="avl_tree.js" + + ``` + +=== "TypeScript" + + ```typescript title="avl_tree.ts" + + ``` + +=== "C" + + ```c title="avl_tree.c" + + ``` + +=== "C#" + + ```csharp title="avl_tree.cs" + + ``` + +### Case 3 - 先左后右 + +对于下图的失衡结点 3 ,**单一使用左旋或右旋都无法使子树恢复平衡**,此时需要「先左旋后右旋」,即先对 `child` 执行「左旋」,再对 `node` 执行「右旋」。 + +![left_right_rotate](avl_tree.assets/left_right_rotate.png) + +### Case 4 - 先右后左 + +同理,取以上失衡二叉树的镜像,则需要「先右旋后左旋」,即先对 `child` 执行「右旋」,然后对 `node` 执行「左旋」。 + +![right_left_rotate](avl_tree.assets/right_left_rotate.png) + +### 旋转的选择 + +下图总结了以上四种失衡情况,分别采用右旋、左旋、先右后左、先左后右的旋转组合。 + +![rotation_cases](avl_tree.assets/rotation_cases.png) + +具体地,需要使用 **失衡结点的平衡因子、较高一侧子结点的平衡因子** 来确定失衡结点属于上图中的哪种情况。 + +