Add C++ code for the chapter binary tree.
This commit is contained in:
@@ -59,12 +59,43 @@ comments: true
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_search_tree.cpp"
|
||||
/* 查找结点 */
|
||||
TreeNode* search(int num) {
|
||||
TreeNode* cur = root;
|
||||
// 循环查找,越过叶结点后跳出
|
||||
while (cur != nullptr) {
|
||||
// 目标结点在 root 的右子树中
|
||||
if (cur->val < num) cur = cur->right;
|
||||
// 目标结点在 root 的左子树中
|
||||
else if (cur->val > num) cur = cur->left;
|
||||
// 找到目标结点,跳出循环
|
||||
else break;
|
||||
}
|
||||
// 返回目标结点
|
||||
return cur;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_search_tree.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_search_tree.go"
|
||||
|
||||
```
|
||||
|
||||
### 插入结点
|
||||
|
||||
给定一个待插入元素 `num` ,为了保持二叉搜索树 “左子树 < 根结点 < 右子树” 的性质,插入操作分为两步:
|
||||
|
||||
1. **查找插入位置:** 与查找操作类似,我们从根结点出发,根据当前结点值和 `num` 的大小关系循环向下搜索,直到越过叶结点(遍历到 $\text{null}$ )时跳出循环;
|
||||
|
||||
2. **在该位置插入结点:** 初始化结点 `num` ,将该结点放到 $\text{null}$ 的位置 ;
|
||||
|
||||
二叉搜索树不允许存在重复结点,否则将会违背其定义。因此若待插入结点在树中已经存在,则不执行插入,直接返回即可。
|
||||
@@ -97,6 +128,44 @@ comments: true
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_search_tree.cpp"
|
||||
/* 插入结点 */
|
||||
TreeNode* insert(int num) {
|
||||
// 若树为空,直接提前返回
|
||||
if (root == nullptr) return nullptr;
|
||||
TreeNode *cur = root, *pre = nullptr;
|
||||
// 循环查找,越过叶结点后跳出
|
||||
while (cur != nullptr) {
|
||||
// 找到重复结点,直接返回
|
||||
if (cur->val == num) return nullptr;
|
||||
pre = cur;
|
||||
// 插入位置在 root 的右子树中
|
||||
if (cur->val < num) cur = cur->right;
|
||||
// 插入位置在 root 的左子树中
|
||||
else cur = cur->left;
|
||||
}
|
||||
// 插入结点 val
|
||||
TreeNode* node = new TreeNode(num);
|
||||
if (pre->val < num) pre->right = node;
|
||||
else pre->left = node;
|
||||
return node;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_search_tree.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_search_tree.go"
|
||||
|
||||
```
|
||||
|
||||
为了插入结点,需要借助 **辅助结点 `prev`** 保存上一轮循环的结点,这样在遍历到 $\text{null}$ 时,我们也可以获取到其父结点,从而完成结点插入操作。
|
||||
|
||||
与查找结点相同,插入结点使用 $O(\log n)$ 时间。
|
||||
@@ -188,6 +257,69 @@ comments: true
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_search_tree.cpp"
|
||||
/* 删除结点 */
|
||||
TreeNode* remove(int num) {
|
||||
// 若树为空,直接提前返回
|
||||
if (root == nullptr) return nullptr;
|
||||
TreeNode *cur = root, *pre = nullptr;
|
||||
// 循环查找,越过叶结点后跳出
|
||||
while (cur != nullptr) {
|
||||
// 找到待删除结点,跳出循环
|
||||
if (cur->val == num) break;
|
||||
pre = cur;
|
||||
// 待删除结点在 root 的右子树中
|
||||
if (cur->val < num) cur = cur->right;
|
||||
// 待删除结点在 root 的左子树中
|
||||
else cur = cur->left;
|
||||
}
|
||||
// 若无待删除结点,则直接返回
|
||||
if (cur == nullptr) return nullptr;
|
||||
// 子结点数量 = 0 or 1
|
||||
if (cur->left == nullptr || cur->right == nullptr) {
|
||||
// 当子结点数量 = 0 / 1 时, child = nullptr / 该子结点
|
||||
TreeNode* child = cur->left != nullptr ? cur->left : cur->right;
|
||||
// 删除结点 cur
|
||||
if (pre->left == cur) pre->left = child;
|
||||
else pre->right = child;
|
||||
}
|
||||
// 子结点数量 = 2
|
||||
else {
|
||||
// 获取中序遍历中 cur 的下一个结点
|
||||
TreeNode* nex = min(cur->right);
|
||||
int tmp = nex->val;
|
||||
// 递归删除结点 nex
|
||||
remove(nex->val);
|
||||
// 将 nex 的值复制给 cur
|
||||
cur->val = tmp;
|
||||
}
|
||||
return cur;
|
||||
}
|
||||
/* 获取最小结点 */
|
||||
TreeNode* min(TreeNode* root) {
|
||||
if (root == nullptr) return root;
|
||||
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
||||
while (root->left != nullptr) {
|
||||
root = root->left;
|
||||
}
|
||||
return root;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_search_tree.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_search_tree.go"
|
||||
|
||||
```
|
||||
|
||||
## 二叉搜索树的优势
|
||||
|
||||
假设给定 $n$ 个数字,最常用的存储方式是「数组」,那么对于这串乱序的数字,常见操作的效率为:
|
||||
|
@@ -18,6 +18,35 @@ comments: true
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp
|
||||
/* 链表结点结构体 */
|
||||
struct TreeNode {
|
||||
int val; // 结点值
|
||||
TreeNode *left; // 左子结点指针
|
||||
TreeNode *right; // 右子结点指针
|
||||
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
||||
};
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python
|
||||
""" 链表结点类 """
|
||||
class TreeNode:
|
||||
def __init__(self, val=0, left=None, right=None):
|
||||
self.val = val # 结点值
|
||||
self.left = left # 左子结点指针
|
||||
self.right = right # 右子结点指针
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go
|
||||
|
||||
```
|
||||
|
||||
结点的两个指针分别指向「左子结点 Left Child Node」和「右子结点 Right Child Node」,并且称该结点为两个子结点的「父结点 Parent Node」。给定二叉树某结点,将左子结点以下的树称为该结点的「左子树 Left Subtree」,右子树同理。
|
||||
|
||||

|
||||
@@ -84,20 +113,75 @@ comments: true
|
||||
n2.right = n5;
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_tree.cpp"
|
||||
/* 初始化二叉树 */
|
||||
// 初始化结点
|
||||
TreeNode* n1 = new TreeNode(1);
|
||||
TreeNode* n2 = new TreeNode(2);
|
||||
TreeNode* n3 = new TreeNode(3);
|
||||
TreeNode* n4 = new TreeNode(4);
|
||||
TreeNode* n5 = new TreeNode(5);
|
||||
// 构建引用指向(即指针)
|
||||
n1->left = n2;
|
||||
n1->right = n3;
|
||||
n2->left = n4;
|
||||
n2->right = n5;
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_tree.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_tree.go"
|
||||
|
||||
```
|
||||
|
||||
**插入与删除结点。** 与链表类似,插入与删除结点都可以通过修改指针实现。
|
||||
|
||||

|
||||
|
||||
<p align="center"> Fig. 在二叉树中插入与删除结点 </p>
|
||||
|
||||
```java title="binary_tree.java"
|
||||
TreeNode P = new TreeNode(0);
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
n1.left = P;
|
||||
P.left = n2;
|
||||
// 删除结点 P
|
||||
n1.left = n2;
|
||||
```
|
||||
=== "Java"
|
||||
|
||||
```java title="binary_tree.java"
|
||||
TreeNode P = new TreeNode(0);
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
n1.left = P;
|
||||
P.left = n2;
|
||||
// 删除结点 P
|
||||
n1.left = n2;
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_tree.cpp"
|
||||
/* 插入与删除结点 */
|
||||
TreeNode* P = new TreeNode(0);
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
n1->left = P;
|
||||
P->left = n2;
|
||||
// 删除结点 P
|
||||
n1->left = n2;
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_tree.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_tree.go"
|
||||
|
||||
```
|
||||
|
||||
!!! note
|
||||
|
||||
@@ -140,6 +224,41 @@ n1.left = n2;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_tree_bfs.cpp"
|
||||
/* 层序遍历 */
|
||||
vector<int> hierOrder(TreeNode* root) {
|
||||
// 初始化队列,加入根结点
|
||||
queue<TreeNode*> queue;
|
||||
queue.push(root);
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
vector<int> vec;
|
||||
while (!queue.empty()) {
|
||||
TreeNode* node = queue.front();
|
||||
queue.pop(); // 队列出队
|
||||
vec.push_back(node->val); // 保存结点
|
||||
if (node->left != NULL)
|
||||
queue.push(node->left); // 左子结点入队
|
||||
if (node->right != NULL)
|
||||
queue.push(node->right); // 右子结点入队
|
||||
}
|
||||
return vec;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_tree_bfs.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_tree_bfs.go"
|
||||
|
||||
```
|
||||
|
||||
### 前序、中序、后序遍历
|
||||
|
||||
相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」,其体现着一种 “先走到尽头,再回头继续” 的回溯遍历方式。
|
||||
@@ -191,6 +310,49 @@ n1.left = n2;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_tree_dfs.cpp"
|
||||
/* 前序遍历 */
|
||||
void preOrder(TreeNode* root) {
|
||||
if (root == nullptr) return;
|
||||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||||
vec.push_back(root->val);
|
||||
preOrder(root->left);
|
||||
preOrder(root->right);
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
void inOrder(TreeNode* root) {
|
||||
if (root == nullptr) return;
|
||||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||||
inOrder(root->left);
|
||||
vec.push_back(root->val);
|
||||
inOrder(root->right);
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
void postOrder(TreeNode* root) {
|
||||
if (root == nullptr) return;
|
||||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||||
postOrder(root->left);
|
||||
postOrder(root->right);
|
||||
vec.push_back(root->val);
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_tree_dfs.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_tree_dfs.go"
|
||||
|
||||
```
|
||||
|
||||
!!! note
|
||||
|
||||
使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。
|
||||
|
Reference in New Issue
Block a user