Add C++ code for the chapter binary tree.

This commit is contained in:
Yudong Jin
2022-11-29 02:21:49 +08:00
parent 980eaf65e0
commit d2db8b8d60
14 changed files with 613 additions and 17 deletions

View File

@@ -59,12 +59,43 @@ comments: true
}
```
=== "C++"
```cpp title="binary_search_tree.cpp"
/* 查找结点 */
TreeNode* search(int num) {
TreeNode* cur = root;
// 循环查找,越过叶结点后跳出
while (cur != nullptr) {
// 目标结点在 root 的右子树中
if (cur->val < num) cur = cur->right;
// 目标结点在 root 的左子树中
else if (cur->val > num) cur = cur->left;
// 找到目标结点,跳出循环
else break;
}
// 返回目标结点
return cur;
}
```
=== "Python"
```python title="binary_search_tree.py"
```
=== "Go"
```go title="binary_search_tree.go"
```
### 插入结点
给定一个待插入元素 `num` ,为了保持二叉搜索树 “左子树 < 根结点 < 右子树” 的性质,插入操作分为两步:
1. **查找插入位置:** 与查找操作类似,我们从根结点出发,根据当前结点值和 `num` 的大小关系循环向下搜索,直到越过叶结点(遍历到 $\text{null}$ )时跳出循环;
2. **在该位置插入结点:** 初始化结点 `num` ,将该结点放到 $\text{null}$ 的位置
二叉搜索树不允许存在重复结点,否则将会违背其定义。因此若待插入结点在树中已经存在,则不执行插入,直接返回即可。
@@ -97,6 +128,44 @@ comments: true
}
```
=== "C++"
```cpp title="binary_search_tree.cpp"
/* 插入结点 */
TreeNode* insert(int num) {
// 若树为空,直接提前返回
if (root == nullptr) return nullptr;
TreeNode *cur = root, *pre = nullptr;
// 循环查找,越过叶结点后跳出
while (cur != nullptr) {
// 找到重复结点,直接返回
if (cur->val == num) return nullptr;
pre = cur;
// 插入位置在 root 的右子树中
if (cur->val < num) cur = cur->right;
// 插入位置在 root 的左子树中
else cur = cur->left;
}
// 插入结点 val
TreeNode* node = new TreeNode(num);
if (pre->val < num) pre->right = node;
else pre->left = node;
return node;
}
```
=== "Python"
```python title="binary_search_tree.py"
```
=== "Go"
```go title="binary_search_tree.go"
```
为了插入结点,需要借助 **辅助结点 `prev`** 保存上一轮循环的结点,这样在遍历到 $\text{null}$ 时,我们也可以获取到其父结点,从而完成结点插入操作。
与查找结点相同,插入结点使用 $O(\log n)$ 时间。
@@ -188,6 +257,69 @@ comments: true
}
```
=== "C++"
```cpp title="binary_search_tree.cpp"
/* 删除结点 */
TreeNode* remove(int num) {
// 若树为空,直接提前返回
if (root == nullptr) return nullptr;
TreeNode *cur = root, *pre = nullptr;
// 循环查找,越过叶结点后跳出
while (cur != nullptr) {
// 找到待删除结点,跳出循环
if (cur->val == num) break;
pre = cur;
// 待删除结点在 root 的右子树中
if (cur->val < num) cur = cur->right;
// 待删除结点在 root 的左子树中
else cur = cur->left;
}
// 若无待删除结点,则直接返回
if (cur == nullptr) return nullptr;
// 子结点数量 = 0 or 1
if (cur->left == nullptr || cur->right == nullptr) {
// 当子结点数量 = 0 / 1 时, child = nullptr / 该子结点
TreeNode* child = cur->left != nullptr ? cur->left : cur->right;
// 删除结点 cur
if (pre->left == cur) pre->left = child;
else pre->right = child;
}
// 子结点数量 = 2
else {
// 获取中序遍历中 cur 的下一个结点
TreeNode* nex = min(cur->right);
int tmp = nex->val;
// 递归删除结点 nex
remove(nex->val);
// 将 nex 的值复制给 cur
cur->val = tmp;
}
return cur;
}
/* 获取最小结点 */
TreeNode* min(TreeNode* root) {
if (root == nullptr) return root;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (root->left != nullptr) {
root = root->left;
}
return root;
}
```
=== "Python"
```python title="binary_search_tree.py"
```
=== "Go"
```go title="binary_search_tree.go"
```
## 二叉搜索树的优势
假设给定 $n$ 个数字,最常用的存储方式是「数组」,那么对于这串乱序的数字,常见操作的效率为:

View File

@@ -18,6 +18,35 @@ comments: true
}
```
=== "C++"
```cpp
/* 链表结点结构体 */
struct TreeNode {
int val; // 结点值
TreeNode *left; // 左子结点指针
TreeNode *right; // 右子结点指针
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
```
=== "Python"
```python
""" 链表结点类 """
class TreeNode:
def __init__(self, val=0, left=None, right=None):
self.val = val # 结点值
self.left = left # 左子结点指针
self.right = right # 右子结点指针
```
=== "Go"
```go
```
结点的两个指针分别指向「左子结点 Left Child Node」和「右子结点 Right Child Node」并且称该结点为两个子结点的「父结点 Parent Node」。给定二叉树某结点将左子结点以下的树称为该结点的「左子树 Left Subtree」右子树同理。
![binary_tree_definition](binary_tree.assets/binary_tree_definition.png)
@@ -84,20 +113,75 @@ comments: true
n2.right = n5;
```
=== "C++"
```cpp title="binary_tree.cpp"
/* 初始化二叉树 */
// 初始化结点
TreeNode* n1 = new TreeNode(1);
TreeNode* n2 = new TreeNode(2);
TreeNode* n3 = new TreeNode(3);
TreeNode* n4 = new TreeNode(4);
TreeNode* n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1->left = n2;
n1->right = n3;
n2->left = n4;
n2->right = n5;
```
=== "Python"
```python title="binary_tree.py"
```
=== "Go"
```go title="binary_tree.go"
```
**插入与删除结点。** 与链表类似,插入与删除结点都可以通过修改指针实现。
![binary_tree_add_remove](binary_tree.assets/binary_tree_add_remove.png)
<p align="center"> Fig. 在二叉树中插入与删除结点 </p>
```java title="binary_tree.java"
TreeNode P = new TreeNode(0);
// 在 n1 -> n2 中间插入结点 P
n1.left = P;
P.left = n2;
// 删除结点 P
n1.left = n2;
```
=== "Java"
```java title="binary_tree.java"
TreeNode P = new TreeNode(0);
// 在 n1 -> n2 中间插入结点 P
n1.left = P;
P.left = n2;
// 删除结点 P
n1.left = n2;
```
=== "C++"
```cpp title="binary_tree.cpp"
/* 插入与删除结点 */
TreeNode* P = new TreeNode(0);
// 在 n1 -> n2 中间插入结点 P
n1->left = P;
P->left = n2;
// 删除结点 P
n1->left = n2;
```
=== "Python"
```python title="binary_tree.py"
```
=== "Go"
```go title="binary_tree.go"
```
!!! note
@@ -140,6 +224,41 @@ n1.left = n2;
}
```
=== "C++"
```cpp title="binary_tree_bfs.cpp"
/* 层序遍历 */
vector<int> hierOrder(TreeNode* root) {
// 初始化队列,加入根结点
queue<TreeNode*> queue;
queue.push(root);
// 初始化一个列表,用于保存遍历序列
vector<int> vec;
while (!queue.empty()) {
TreeNode* node = queue.front();
queue.pop(); // 队列出队
vec.push_back(node->val); // 保存结点
if (node->left != NULL)
queue.push(node->left); // 左子结点入队
if (node->right != NULL)
queue.push(node->right); // 右子结点入队
}
return vec;
}
```
=== "Python"
```python title="binary_tree_bfs.py"
```
=== "Go"
```go title="binary_tree_bfs.go"
```
### 前序、中序、后序遍历
相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」其体现着一种 “先走到尽头,再回头继续” 的回溯遍历方式。
@@ -191,6 +310,49 @@ n1.left = n2;
}
```
=== "C++"
```cpp title="binary_tree_dfs.cpp"
/* 前序遍历 */
void preOrder(TreeNode* root) {
if (root == nullptr) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
vec.push_back(root->val);
preOrder(root->left);
preOrder(root->right);
}
/* 中序遍历 */
void inOrder(TreeNode* root) {
if (root == nullptr) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root->left);
vec.push_back(root->val);
inOrder(root->right);
}
/* 后序遍历 */
void postOrder(TreeNode* root) {
if (root == nullptr) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root->left);
postOrder(root->right);
vec.push_back(root->val);
}
```
=== "Python"
```python title="binary_tree_dfs.py"
```
=== "Go"
```go title="binary_tree_dfs.go"
```
!!! note
使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。