Add C++ code for the chapter binary tree.
This commit is contained in:
@@ -59,12 +59,43 @@ comments: true
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_search_tree.cpp"
|
||||
/* 查找结点 */
|
||||
TreeNode* search(int num) {
|
||||
TreeNode* cur = root;
|
||||
// 循环查找,越过叶结点后跳出
|
||||
while (cur != nullptr) {
|
||||
// 目标结点在 root 的右子树中
|
||||
if (cur->val < num) cur = cur->right;
|
||||
// 目标结点在 root 的左子树中
|
||||
else if (cur->val > num) cur = cur->left;
|
||||
// 找到目标结点,跳出循环
|
||||
else break;
|
||||
}
|
||||
// 返回目标结点
|
||||
return cur;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_search_tree.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_search_tree.go"
|
||||
|
||||
```
|
||||
|
||||
### 插入结点
|
||||
|
||||
给定一个待插入元素 `num` ,为了保持二叉搜索树 “左子树 < 根结点 < 右子树” 的性质,插入操作分为两步:
|
||||
|
||||
1. **查找插入位置:** 与查找操作类似,我们从根结点出发,根据当前结点值和 `num` 的大小关系循环向下搜索,直到越过叶结点(遍历到 $\text{null}$ )时跳出循环;
|
||||
|
||||
2. **在该位置插入结点:** 初始化结点 `num` ,将该结点放到 $\text{null}$ 的位置 ;
|
||||
|
||||
二叉搜索树不允许存在重复结点,否则将会违背其定义。因此若待插入结点在树中已经存在,则不执行插入,直接返回即可。
|
||||
@@ -97,6 +128,44 @@ comments: true
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_search_tree.cpp"
|
||||
/* 插入结点 */
|
||||
TreeNode* insert(int num) {
|
||||
// 若树为空,直接提前返回
|
||||
if (root == nullptr) return nullptr;
|
||||
TreeNode *cur = root, *pre = nullptr;
|
||||
// 循环查找,越过叶结点后跳出
|
||||
while (cur != nullptr) {
|
||||
// 找到重复结点,直接返回
|
||||
if (cur->val == num) return nullptr;
|
||||
pre = cur;
|
||||
// 插入位置在 root 的右子树中
|
||||
if (cur->val < num) cur = cur->right;
|
||||
// 插入位置在 root 的左子树中
|
||||
else cur = cur->left;
|
||||
}
|
||||
// 插入结点 val
|
||||
TreeNode* node = new TreeNode(num);
|
||||
if (pre->val < num) pre->right = node;
|
||||
else pre->left = node;
|
||||
return node;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_search_tree.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_search_tree.go"
|
||||
|
||||
```
|
||||
|
||||
为了插入结点,需要借助 **辅助结点 `prev`** 保存上一轮循环的结点,这样在遍历到 $\text{null}$ 时,我们也可以获取到其父结点,从而完成结点插入操作。
|
||||
|
||||
与查找结点相同,插入结点使用 $O(\log n)$ 时间。
|
||||
@@ -188,6 +257,69 @@ comments: true
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_search_tree.cpp"
|
||||
/* 删除结点 */
|
||||
TreeNode* remove(int num) {
|
||||
// 若树为空,直接提前返回
|
||||
if (root == nullptr) return nullptr;
|
||||
TreeNode *cur = root, *pre = nullptr;
|
||||
// 循环查找,越过叶结点后跳出
|
||||
while (cur != nullptr) {
|
||||
// 找到待删除结点,跳出循环
|
||||
if (cur->val == num) break;
|
||||
pre = cur;
|
||||
// 待删除结点在 root 的右子树中
|
||||
if (cur->val < num) cur = cur->right;
|
||||
// 待删除结点在 root 的左子树中
|
||||
else cur = cur->left;
|
||||
}
|
||||
// 若无待删除结点,则直接返回
|
||||
if (cur == nullptr) return nullptr;
|
||||
// 子结点数量 = 0 or 1
|
||||
if (cur->left == nullptr || cur->right == nullptr) {
|
||||
// 当子结点数量 = 0 / 1 时, child = nullptr / 该子结点
|
||||
TreeNode* child = cur->left != nullptr ? cur->left : cur->right;
|
||||
// 删除结点 cur
|
||||
if (pre->left == cur) pre->left = child;
|
||||
else pre->right = child;
|
||||
}
|
||||
// 子结点数量 = 2
|
||||
else {
|
||||
// 获取中序遍历中 cur 的下一个结点
|
||||
TreeNode* nex = min(cur->right);
|
||||
int tmp = nex->val;
|
||||
// 递归删除结点 nex
|
||||
remove(nex->val);
|
||||
// 将 nex 的值复制给 cur
|
||||
cur->val = tmp;
|
||||
}
|
||||
return cur;
|
||||
}
|
||||
/* 获取最小结点 */
|
||||
TreeNode* min(TreeNode* root) {
|
||||
if (root == nullptr) return root;
|
||||
// 循环访问左子结点,直到叶结点时为最小结点,跳出
|
||||
while (root->left != nullptr) {
|
||||
root = root->left;
|
||||
}
|
||||
return root;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_search_tree.py"
|
||||
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_search_tree.go"
|
||||
|
||||
```
|
||||
|
||||
## 二叉搜索树的优势
|
||||
|
||||
假设给定 $n$ 个数字,最常用的存储方式是「数组」,那么对于这串乱序的数字,常见操作的效率为:
|
||||
|
Reference in New Issue
Block a user