--- comments: true --- # 时间复杂度 ## 统计算法运行时间 运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 **准确预估一段代码的运行时间** ,该如何做呢? 1. 首先需要 **确定运行平台** ,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。 2. 评估 **各种计算操作的所需运行时间** ,例如加法操作 `+` 需要 1 ns ,乘法操作 `*` 需要 10 ns ,打印操作需要 5 ns 等。 3. 根据代码 **统计所有计算操作的数量** ,并将所有操作的执行时间求和,即可得到运行时间。 例如以下代码,输入数据大小为 $n$ ,根据以上方法,可以得到算法运行时间为 $6n + 12$ ns 。 $$ 1 + 1 + 10 + (1 + 5) \times n = 6n + 12 $$ === "Java" ```java title="" // 在某运行平台下 void algorithm(int n) { int a = 2; // 1 ns a = a + 1; // 1 ns a = a * 2; // 10 ns // 循环 n 次 for (int i = 0; i < n; i++) { // 1 ns ,每轮都要执行 i++ System.out.println(0); // 5 ns } } ``` === "C++" ```cpp title="" ``` === "Python" ```python title="" ``` 但实际上, **统计算法的运行时间既不合理也不现实。** 首先,我们不希望预估时间和运行平台绑定,毕竟算法需要跑在各式各样的平台之上。其次,我们很难获知每一种操作的运行时间,这为预估过程带来了极大的难度。 ## 统计时间增长趋势 「时间复杂度分析」采取了不同的做法,其统计的不是算法运行时间,而是 **算法运行时间随着数据量变大时的增长趋势** 。 “时间增长趋势” 这个概念比较抽象,我们借助一个例子来理解。设输入数据大小为 $n$ ,给定三个算法 `A` , `B` , `C` 。 - 算法 `A` 只有 $1$ 个打印操作,算法运行时间不随着 $n$ 增大而增长。我们称此算法的时间复杂度为「常数阶」。 - 算法 `B` 中的打印操作需要循环 $n$ 次,算法运行时间随着 $n$ 增大成线性增长。此算法的时间复杂度被称为「线性阶」。 - 算法 `C` 中的打印操作需要循环 $1000000$ 次,但运行时间仍与输入数据大小 $n$ 无关。因此 `C` 的时间复杂度和 `A` 相同,仍为「常数阶」。 === "Java" ```java title="" // 算法 A 时间复杂度:常数阶 void algorithm_A(int n) { System.out.println(0); } // 算法 B 时间复杂度:线性阶 void algorithm_B(int n) { for (int i = 0; i < n; i++) { System.out.println(0); } } // 算法 C 时间复杂度:常数阶 void algorithm_C(int n) { for (int i = 0; i < 1000000; i++) { System.out.println(0); } } ``` === "C++" ```cpp title="" ``` === "Python" ```python title="" ``` ![time_complexity_first_example](time_complexity.assets/time_complexity_first_example.png)

Fig. 算法 A, B, C 的时间增长趋势

相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足? **时间复杂度可以有效评估算法效率。** 算法 `B` 运行时间的增长是线性的,在 $n > 1$ 时慢于算法 `A` ,在 $n > 1000000$ 时慢于算法 `C` 。实质上,只要输入数据大小 $n$ 足够大,复杂度为「常数阶」的算法一定优于「线性阶」的算法,这也正是时间增长趋势的含义。 **时间复杂度分析将统计「计算操作的运行时间」简化为统计「计算操作的数量」。** 这是因为,无论是运行平台、还是计算操作类型,都与算法运行时间的增长趋势无关。因此,我们可以简单地将所有计算操作的执行时间统一看作是相同的 “单位时间” 。 **时间复杂度也存在一定的局限性。** 比如,虽然算法 `A` 和 `C` 的时间复杂度相同,但是实际的运行时间有非常大的差别。再比如,虽然算法 `B` 比 `C` 的时间复杂度要更高,但在输入数据大小 $n$ 比较小时,算法 `B` 是要明显优于算法 `C` 的。即使存在这些问题,计算复杂度仍然是评判算法效率的最有效、最常用方法。 ## 函数渐进上界 设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为 $$ T(n) = 3 + 2n $$ === "Java" ```java title="" void algorithm(int n) { int a = 1; // +1 a = a + 1; // +1 a = a * 2; // +1 // 循环 n 次 for (int i = 0; i < n; i++) { // +1(每轮都执行 i ++) System.out.println(0); // +1 } } ``` === "C++" ```cpp title="" ``` === "Python" ```python title="" ``` $T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。 我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」,代表函数 $T(n)$ 的「渐进上界 asymptotic upper bound」。 我们要推算时间复杂度,本质上是在计算「操作数量函数 $T(n)$ 」的渐进上界。下面我们先来看看函数渐进上界的数学定义。 !!! abstract "函数渐进上界" 若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有 $$ T(n) \leq c \cdot f(n) $$ 则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐进上界,记为 $$ T(n) = O(f(n)) $$ ![asymptotic_upper_bound](time_complexity.assets/asymptotic_upper_bound.png)

Fig. 函数的渐进上界

本质上看,计算渐进上界就是在找一个函数 $f(n)$ ,**使得在 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别(仅相差一个常数项 $c$ 的倍数)**。 !!! tip 渐进上界的数学味儿有点重,如果你感觉没有完全理解,无需担心,因为在实际使用中我们只需要会推算即可,数学意义可以慢慢领悟。 ## 推算方法 推算出 $f(n)$ 后,我们就得到时间复杂度 $O(f(n))$ 。那么,如何来确定渐进上界 $f(n)$ 呢?总体分为两步,首先「统计操作数量」,然后「判断渐进上界」。 ### 1. 统计操作数量 对着代码,从上到下一行一行地计数即可。然而,**由于上述 $c \cdot f(n)$ 中的常数项 $c$ 可以取任意大小,因此操作数量 $T(n)$ 中的各种系数、常数项都可以被忽略**。根据此原则,可以总结出以下计数偷懒技巧: 1. **跳过数量与 $n$ 无关的操作。** 因为他们都是 $T(n)$ 中的常数项,对时间复杂度不产生影响。 2. **省略所有系数。** 例如,循环 $2n$ 次、$5n + 1$ 次、……,都可以化简记为 $n$ 次,因为 $n$ 前面的系数对时间复杂度也不产生影响。 3. **循环嵌套时使用乘法。** 总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用上述 `1.` 和 `2.` 技巧。 根据以下示例,使用上述技巧前、后的统计结果分别为 $$ \begin{aligned} T(n) & = 2n(n + 1) + (5n + 1) + 2 & \text{完整统计 (-.-|||)} \newline & = 2n^2 + 7n + 3 \newline T(n) & = n^2 + n & \text{偷懒统计 (o.O)} \end{aligned} $$ 最终,两者都能推出相同的时间复杂度结果,即 $O(n^2)$ 。 === "Java" ```java title="" void algorithm(int n) { int a = 1; // +0(技巧 1) a = a + n; // +0(技巧 1) // +n(技巧 2) for (int i = 0; i < 5 * n + 1; i++) { System.out.println(0); } // +n*n(技巧 3) for (int i = 0; i < 2 * n; i++) { for (int j = 0; j < n + 1; j++) { System.out.println(0); } } } ``` === "C++" ```cpp title="" ``` === "Python" ```python title="" ``` ### 2. 判断渐进上界 **时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将处于主导作用,其它项的影响都可以被忽略。 以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 **系数无法撼动阶数** 这一结论。在 $n$ 趋于无穷大时,这些常数都是 “浮云” 。
| 操作数量 $T(n)$ | 时间复杂度 $O(f(n))$ | | ---------------------- | -------------------- | | $100000$ | $O(1)$ | | $3n + 2$ | $O(n)$ | | $2n^2 + 3n + 2$ | $O(n^2)$ | | $n^3 + 10000n^2$ | $O(n^3)$ | | $2^n + 10000n^{10000}$ | $O(2^n)$ |
## 常见类型 设输入数据大小为 $n$ ,常见的时间复杂度类型有(从低到高排列) $$ \begin{aligned} O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(2^n) < O(n!) \newline \text{常数阶} < \text{对数阶} < \text{线性阶} < \text{线性对数阶} < \text{平方阶} < \text{指数阶} < \text{阶乘阶} \end{aligned} $$ ![time_complexity_common_types](time_complexity.assets/time_complexity_common_types.png)

Fig. 时间复杂度的常见类型

!!! tip 部分示例代码需要一些前置知识,包括数组、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段先聚焦在理解时间复杂度含义和推算方法上。 ### 常数阶 $O(1)$ 常数阶的操作数量与输入数据大小 $n$ 无关,即不随着 $n$ 的变化而变化。 对于以下算法,无论操作数量 `size` 有多大,只要与数据大小 $n$ 无关,时间复杂度就仍为 $O(1)$ 。 === "Java" ```java title="" title="time_complexity_types.java" /* 常数阶 */ int constant(int n) { int count = 0; int size = 100000; for (int i = 0; i < size; i++) count++; return count; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ### 线性阶 $O(n)$ 线性阶的操作数量相对输入数据大小成线性级别增长。线性阶常出现于单层循环。 === "Java" ```java title="" title="time_complexity_types.java" /* 线性阶 */ int linear(int n) { int count = 0; for (int i = 0; i < n; i++) count++; return count; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` 「遍历数组」和「遍历链表」等操作,时间复杂度都为 $O(n)$ ,其中 $n$ 为数组或链表的长度。 !!! tip **数据大小 $n$ 是根据输入数据的类型来确定的。** 比如,在上述示例中,我们直接将 $n$ 看作输入数据大小;以下遍历数组示例中,数据大小 $n$ 为数组的长度。 === "Java" ```java title="" title="time_complexity_types.java" /* 线性阶(遍历数组) */ int arrayTraversal(int[] nums) { int count = 0; // 循环次数与数组长度成正比 for (int num : nums) { count++; } return count; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ### 平方阶 $O(n^2)$ 平方阶的操作数量相对输入数据大小成平方级别增长。平方阶常出现于嵌套循环,外层循环和内层循环都为 $O(n)$ ,总体为 $O(n^2)$ 。 === "Java" ```java title="" title="time_complexity_types.java" /* 平方阶 */ int quadratic(int n) { int count = 0; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { count++; } } return count; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ![time_complexity_constant_linear_quadratic](time_complexity.assets/time_complexity_constant_linear_quadratic.png)

Fig. 常数阶、线性阶、平方阶的时间复杂度

以「冒泡排序」为例,外层循环 $n - 1$ 次,内层循环 $n-1, n-2, \cdots, 2, 1$ 次,平均为 $\frac{n}{2}$ 次,因此时间复杂度为 $O(n^2)$ 。 $$ O((n - 1) \frac{n}{2}) = O(n^2) $$ === "Java" ```java title="" title="time_complexity_types.java" /* 平方阶(冒泡排序) */ void bubbleSort(int[] nums) { int n = nums.length; for (int i = 0; i < n - 1; i++) { for (int j = 0; j < n - 1 - i; j++) { if (nums[j] > nums[j + 1]) { // 交换 nums[j] 和 nums[j + 1] int tmp = nums[j]; nums[j] = nums[j + 1]; nums[j + 1] = tmp; } } } } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ### 指数阶 $O(2^n)$ !!! note 生物学科中的 “细胞分裂” 即是指数阶增长:初始状态为 $1$ 个细胞,分裂一轮后为 $2$ 个,分裂两轮后为 $4$ 个,……,分裂 $n$ 轮后有 $2^n$ 个细胞。 指数阶增长地非常快,在实际应用中一般是不能被接受的。若一个问题使用「暴力枚举」求解的时间复杂度是 $O(2^n)$ ,那么一般都需要使用「动态规划」或「贪心算法」等算法来求解。 === "Java" ```java title="" title="time_complexity_types.java" /* 指数阶(遍历实现) */ int exponential(int n) { int count = 0, base = 1; // cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1) for (int i = 0; i < n; i++) { for (int j = 0; j < base; j++) { count++; } base *= 2; } // count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1 return count; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ![time_complexity_exponential](time_complexity.assets/time_complexity_exponential.png)

Fig. 指数阶的时间复杂度

在实际算法中,指数阶常出现于递归函数。例如以下代码,不断地一分为二,分裂 $n$ 次后停止。 === "Java" ```java title="" title="time_complexity_types.java" /* 指数阶(递归实现) */ int expRecur(int n) { if (n == 1) return 1; return expRecur(n - 1) + expRecur(n - 1) + 1; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ### 对数阶 $O(\log n)$ 对数阶与指数阶正好相反,后者反映 “每轮增加到两倍的情况” ,而前者反映 “每轮缩减到一半的情况” 。对数阶仅次于常数阶,时间增长的很慢,是理想的时间复杂度。 对数阶常出现于「二分查找」和「分治算法」中,体现 “一分为多” 、“化繁为简” 的算法思想。 设输入数据大小为 $n$ ,由于每轮缩减到一半,因此循环次数是 $\log_2 n$ ,即 $2^n$ 的反函数。 === "Java" ```java title="" title="time_complexity_types.java" /* 对数阶(循环实现) */ int logarithmic(float n) { int count = 0; while (n > 1) { n = n / 2; count++; } return count; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ![time_complexity_logarithmic](time_complexity.assets/time_complexity_logarithmic.png)

Fig. 对数阶的时间复杂度

与指数阶类似,对数阶也常出现于递归函数。以下代码形成了一个高度为 $\log_2 n$ 的递归树。 === "Java" ```java title="" title="time_complexity_types.java" /* 对数阶(递归实现) */ int logRecur(float n) { if (n <= 1) return 0; return logRecur(n / 2) + 1; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ### 线性对数阶 $O(n \log n)$ 线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 $O(\log n)$ 和 $O(n)$ 。 主流排序算法的时间复杂度都是 $O(n \log n )$ ,例如快速排序、归并排序、堆排序等。 === "Java" ```java title="" title="time_complexity_types.java" /* 线性对数阶 */ int linearLogRecur(float n) { if (n <= 1) return 1; int count = linearLogRecur(n / 2) + linearLogRecur(n / 2); for (int i = 0; i < n; i++) { count++; } return count; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ![time_complexity_logarithmic_linear](time_complexity.assets/time_complexity_logarithmic_linear.png)

Fig. 线性对数阶的时间复杂度

### 阶乘阶 $O(n!)$ 阶乘阶对应数学上的「全排列」。即给定 $n$ 个互不重复的元素,求其所有可能的排列方案,则方案数量为 $$ n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1 $$ 阶乘常使用递归实现。例如以下代码,第一层分裂出 $n$ 个,第二层分裂出 $n - 1$ 个,…… ,直至到第 $n$ 层时终止分裂。 === "Java" ```java title="" title="time_complexity_types.java" /* 阶乘阶(递归实现) */ int factorialRecur(int n) { if (n == 0) return 1; int count = 0; // 从 1 个分裂出 n 个 for (int i = 0; i < n; i++) { count += factorialRecur(n - 1); } return count; } ``` === "C++" ```cpp title="time_complexity_types.cpp" ``` === "Python" ```python title="time_complexity_types.py" ``` ![time_complexity_factorial](time_complexity.assets/time_complexity_factorial.png)

Fig. 阶乘阶的时间复杂度

## 最差、最佳、平均时间复杂度 **某些算法的时间复杂度不是恒定的,而是与输入数据的分布有关。** 举一个例子,输入一个长度为 $n$ 数组 `nums` ,其中 `nums` 由从 $1$ 至 $n$ 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 $1$ 的索引。我们可以得出以下结论: - 当 `nums = [?, ?, ..., 1]`,即当末尾元素是 $1$ 时,则需完整遍历数组,此时达到 **最差时间复杂度 $O(n)$** ; - 当 `nums = [1, ?, ?, ...]` ,即当首个数字为 $1$ 时,无论数组多长都不需要继续遍历,此时达到 **最佳时间复杂度 $\Omega(1)$** ; 「函数渐进上界」使用大 $O$ 记号表示,代表「最差时间复杂度」。与之对应,「函数渐进下界」用 $\Omega$ 记号(Omega Notation)来表示,代表「最佳时间复杂度」。 === "Java" ```java title="" title="worst_best_time_complexity.java" public class worst_best_time_complexity { /* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */ static int[] randomNumbers(int n) { Integer[] nums = new Integer[n]; // 生成数组 nums = { 1, 2, 3, ..., n } for (int i = 0; i < n; i++) { nums[i] = i + 1; } // 随机打乱数组元素 Collections.shuffle(Arrays.asList(nums)); // Integer[] -> int[] int[] res = new int[n]; for (int i = 0; i < n; i++) { res[i] = nums[i]; } return res; } /* 查找数组 nums 中数字 1 所在索引 */ static int findOne(int[] nums) { for (int i = 0; i < nums.length; i++) { if (nums[i] == 1) return i; } return -1; } /* Driver Code */ public static void main(String[] args) { for (int i = 0; i < 10; i++) { int n = 100; int[] nums = randomNumbers(n); int index = findOne(nums); System.out.println("打乱后的数组为 " + Arrays.toString(nums)); System.out.println("数字 1 的索引为 " + index); } } } ``` === "C++" ```cpp title="worst_best_time_complexity.cpp" ``` === "Python" ```python title="worst_best_time_complexity.py" ``` !!! tip 我们在实际应用中很少使用「最佳时间复杂度」,因为往往只有很小概率下才能达到,会带来一定的误导性。反之,「最差时间复杂度」最为实用,因为它给出了一个 “效率安全值” ,让我们可以放心地使用算法。 从上述示例可以看出,最差或最佳时间复杂度只出现在 “特殊分布的数据” 中,这些情况的出现概率往往很小,因此并不能最真实地反映算法运行效率。**相对地,「平均时间复杂度」可以体现算法在随机输入数据下的运行效率,用 $\Theta$ 记号(Theta Notation)来表示**。 对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 $1$ 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 $\frac{n}{2}$ ,平均时间复杂度为 $\Theta(\frac{n}{2}) = \Theta(n)$ 。 但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分布下的整体数学期望。这种情况下,我们一般使用最差时间复杂度来作为算法效率的评判标准。