二叉树¶
「二叉树 Binary Tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着 “一分为二” 的分治逻辑。类似于链表,二叉树也是以结点为单位存储的,结点包含「值」和两个「指针」。
结点的两个指针分别指向「左子结点 Left Child Node」和「右子结点 Right Child Node」,并且称该结点为两个子结点的「父结点 Parent Node」。给定二叉树某结点,将左子结点以下的树称为该结点的「左子树 Left Subtree」,右子树同理。
Fig. 子结点与子树
需要注意,父结点、子结点、子树是可以向下递推的。例如,如果将上图的「结点 2」看作父结点,那么其左子结点和右子结点分别为「结点 4」和「结点 5」,左子树和右子树分别为「结点 4 以下的树」和「结点 5 以下的树」。
二叉树常见术语¶
「根结点 Root Node」:二叉树最顶层的结点,其没有父结点;
「叶结点 Leaf Node」:没有子结点的结点,其两个指针都指向 \(\text{null}\) ;
结点「度 Degree」:结点的子结点数量,二叉树中度的范围是 0, 1, 2 ;
结点「深度 Depth」 :根结点到该结点的层数;
结点「高度 Height」:最远叶结点到该结点的层数;
二叉树「高度」:二叉树中根结点到最远叶结点的层数;
Fig. 二叉树的常见术语
二叉树最佳和最差结构¶
当二叉树的每层的结点都被填满时,达到「完美二叉树」;而当所有结点都偏向一边时,二叉树退化为「链表」。
Fig. 二叉树的最佳和最差结构
在最佳和最差结构下,二叉树的结点数量和高度等性质达到最大(最小)值。
完美二叉树 | 链表 | |
---|---|---|
二叉树第 \(i\) 层的结点数量 | \(2^{i-1}\) | \(1\) |
高度为 \(h\) 的二叉树的结点总数 | \(2^h - 1\) | \(h\) |
结点总数为 \(n\) 的二叉树的高度 | \(\log_2 n + 1\) | \(n\) |
二叉树基本操作¶
初始化二叉树。 与链表类似,先初始化结点,再构建引用指向(即指针)。
插入与删除结点。 与链表类似,插入与删除结点都可以通过修改指针实现。
Fig. 在二叉树中插入与删除结点
Note
插入结点会改变二叉树的原有逻辑结构,删除结点往往意味着删除了该结点的所有子树。因此,二叉树中的插入与删除一般都是由一套操作配合完成的,这样才能实现有意义的操作。
二叉树遍历¶
非线性数据结构的遍历操作比线性数据结构更加复杂,往往需要使用搜索算法来实现。常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。
层序遍历¶
「层序遍历 Hierarchical-Order Traversal」从顶至底、一层一层地遍历二叉树,并在每层中按照从左到右的顺序访问结点。
层序遍历本质上是「广度优先搜索 Breadth-First Traversal」,其体现着一种 “一圈一圈向外” 的层进遍历方式。
Fig. 二叉树的层序遍历
广度优先遍历一般借助「队列」来实现。队列的规则是 “先进先出” ,广度优先遍历的规则是 ”一层层平推“ ,两者背后的思想是一致的。
/* 层序遍历 */
List<Integer> hierOrder(TreeNode root) {
// 初始化队列,加入根结点
Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
// 初始化一个列表,用于保存遍历序列
List<Integer> list = new ArrayList<>();
while (!queue.isEmpty()) {
TreeNode node = queue.poll(); // 队列出队
list.add(node.val); // 保存结点值
if (node.left != null)
queue.offer(node.left); // 左子结点入队
if (node.right != null)
queue.offer(node.right); // 右子结点入队
}
return list;
}
/* 层序遍历 */
vector<int> hierOrder(TreeNode* root) {
// 初始化队列,加入根结点
queue<TreeNode*> queue;
queue.push(root);
// 初始化一个列表,用于保存遍历序列
vector<int> vec;
while (!queue.empty()) {
TreeNode* node = queue.front();
queue.pop(); // 队列出队
vec.push_back(node->val); // 保存结点
if (node->left != nullptr)
queue.push(node->left); // 左子结点入队
if (node->right != nullptr)
queue.push(node->right); // 右子结点入队
}
return vec;
}
/* 层序遍历 */
func levelOrder(root *TreeNode) []int {
// 初始化队列,加入根结点
queue := list.New()
queue.PushBack(root)
// 初始化一个切片,用于保存遍历序列
nums := make([]int, 0)
for queue.Len() > 0 {
// poll
node := queue.Remove(queue.Front()).(*TreeNode)
// 保存结点
nums = append(nums, node.Val)
if node.Left != nil {
// 左子结点入队
queue.PushBack(node.Left)
}
if node.Right != nil {
// 右子结点入队
queue.PushBack(node.Right)
}
}
return nums
}
/* 层序遍历 */
function hierOrder(root) {
// 初始化队列,加入根结点
let queue = [root];
// 初始化一个列表,用于保存遍历序列
let list = [];
while (queue.length) {
let node = queue.shift(); // 队列出队
list.push(node.val); // 保存结点
if (node.left)
queue.push(node.left); // 左子结点入队
if (node.right)
queue.push(node.right); // 右子结点入队
}
return list;
}
前序、中序、后序遍历¶
相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」,其体现着一种 “先走到尽头,再回头继续” 的回溯遍历方式。
如下图所示,左侧是深度优先遍历的的示意图,右上方是对应的递归实现代码。深度优先遍历就像是绕着整个二叉树的外围 “走” 一圈,走的过程中,在每个结点都会遇到三个位置,分别对应前序遍历、中序遍历、后序遍历。
Fig. 二叉树的前 / 中 / 后序遍历
位置 | 含义 | 此处访问结点时对应 |
---|---|---|
橙色圆圈处 | 刚进入此结点,即将访问该结点的左子树 | 前序遍历 Pre-Order Traversal |
蓝色圆圈处 | 已访问完左子树,即将访问右子树 | 中序遍历 In-Order Traversal |
紫色圆圈处 | 已访问完左子树和右子树,即将返回 | 后序遍历 Post-Order Traversal |
/* 前序遍历 */
void preOrder(TreeNode root) {
if (root == null) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
list.add(root.val);
preOrder(root.left);
preOrder(root.right);
}
/* 中序遍历 */
void inOrder(TreeNode root) {
if (root == null) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root.left);
list.add(root.val);
inOrder(root.right);
}
/* 后序遍历 */
void postOrder(TreeNode root) {
if (root == null) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root.left);
postOrder(root.right);
list.add(root.val);
}
/* 前序遍历 */
void preOrder(TreeNode* root) {
if (root == nullptr) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
vec.push_back(root->val);
preOrder(root->left);
preOrder(root->right);
}
/* 中序遍历 */
void inOrder(TreeNode* root) {
if (root == nullptr) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root->left);
vec.push_back(root->val);
inOrder(root->right);
}
/* 后序遍历 */
void postOrder(TreeNode* root) {
if (root == nullptr) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root->left);
postOrder(root->right);
vec.push_back(root->val);
}
/* 前序遍历 */
func preOrder(node *TreeNode) {
if node == nil {
return
}
// 访问优先级:根结点 -> 左子树 -> 右子树
nums = append(nums, node.Val)
preOrder(node.Left)
preOrder(node.Right)
}
/* 中序遍历 */
func inOrder(node *TreeNode) {
if node == nil {
return
}
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(node.Left)
nums = append(nums, node.Val)
inOrder(node.Right)
}
/* 后序遍历 */
func postOrder(node *TreeNode) {
if node == nil {
return
}
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(node.Left)
postOrder(node.Right)
nums = append(nums, node.Val)
}
/* 前序遍历 */
function preOrder(root){
if (root === null) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
list.push(root.val);
preOrder(root.left);
preOrder(root.right);
}
/* 中序遍历 */
function inOrder(root) {
if (root === null) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root.left);
list.push(root.val);
inOrder(root.right);
}
/* 后序遍历 */
function postOrder(root) {
if (root === null) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root.left);
postOrder(root.right);
list.push(root.val);
}
Note
使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。