--- comments: true --- # 二分查找 「二分查找 Binary Search」利用数据的有序性,通过每轮缩小一半搜索区间来查找目标元素。 使用二分查找有两个前置条件: - **要求输入数据是有序的**,这样才能通过判断大小关系来排除一半的搜索区间; - **二分查找仅适用于数组** ,而在链表中使用效率很低,因为其在循环中需要跳跃式(非连续地)访问元素。 ## 算法实现 给定一个长度为 $n$ 的排序数组 `nums` ,元素从小到大排列。数组的索引取值范围为 $$ 0, 1, 2, \cdots, n-1 $$ 使用「区间」来表示这个取值范围的方法主要有两种: 1. **双闭区间 $[0, n-1]$** ,即两个边界都包含自身;此方法下,区间 $[0, 0]$ 仍包含一个元素; 2. **左闭右开 $[0, n)$** ,即左边界包含自身、右边界不包含自身;此方法下,区间 $[0, 0)$ 为空; ### “双闭区间” 实现 首先,我们先采用 “双闭区间” 的表示,在数组 `nums` 中查找目标元素 `target` 的对应索引。 === "Step 1" ![binary_search_step1](binary_search.assets/binary_search_step1.png) === "Step 2" ![binary_search_step2](binary_search.assets/binary_search_step2.png) === "Step 3" ![binary_search_step3](binary_search.assets/binary_search_step3.png) === "Step 4" ![binary_search_step4](binary_search.assets/binary_search_step4.png) === "Step 5" ![binary_search_step5](binary_search.assets/binary_search_step5.png) === "Step 6" ![binary_search_step6](binary_search.assets/binary_search_step6.png) === "Step 7" ![binary_search_step7](binary_search.assets/binary_search_step7.png) 二分查找 “双闭区间” 表示下的代码如下所示。 === "Java" ```java title="binary_search.java" /* 二分查找(双闭区间) */ int binarySearch(int[] nums, int target) { // 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素 int i = 0, j = nums.length - 1; // 循环,当搜索区间为空时跳出(当 i > j 时为空) while (i <= j) { int m = (i + j) / 2; // 计算中点索引 m if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中 i = m + 1; else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中 j = m - 1; else // 找到目标元素,返回其索引 return m; } // 未找到目标元素,返回 -1 return -1; } ``` === "C++" ```cpp title="binary_search.cpp" /* 二分查找(双闭区间) */ int binarySearch(vector& nums, int target) { // 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素 int i = 0, j = nums.size() - 1; // 循环,当搜索区间为空时跳出(当 i > j 时为空) while (i <= j) { int m = (i + j) / 2; // 计算中点索引 m if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j] 中 i = m + 1; else if (nums[m] > target) // 此情况说明 target 在区间 [i, m-1] 中 j = m - 1; else // 找到目标元素,返回其索引 return m; } // 未找到目标元素,返回 -1 return -1; } ``` === "Python" ```python title="binary_search.py" """ 二分查找(双闭区间) """ def binary_search(nums, target): # 初始化双闭区间 [0, n-1] ,即 i, j 分别指向数组首元素、尾元素 i, j = 0, len(nums) - 1 while i <= j: m = (i + j) // 2 # 计算中点索引 m if nums[m] < target: # 此情况说明 target 在区间 [m+1, j] 中 i = m + 1 elif nums[m] > target: # 此情况说明 target 在区间 [i, m-1] 中 j = m - 1 else: return m # 找到目标元素,返回其索引 return -1 # 未找到目标元素,返回 -1 ``` === "Go" ```go title="binary_search.go" ``` === "JavaScript" ```js title="binary_search.js" ``` === "TypeScript" ```typescript title="binary_search.ts" ``` === "C" ```c title="binary_search.c" ``` === "C#" ```csharp title="binary_search.cs" ``` ### “左闭右开” 实现 当然,我们也可以使用 “左闭右开” 的表示方法,写出相同功能的二分查找代码。 === "Java" ```java title="binary_search.java" /* 二分查找(左闭右开) */ int binarySearch1(int[] nums, int target) { // 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1 int i = 0, j = nums.length; // 循环,当搜索区间为空时跳出(当 i = j 时为空) while (i < j) { int m = (i + j) / 2; // 计算中点索引 m if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中 i = m + 1; else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中 j = m; else // 找到目标元素,返回其索引 return m; } // 未找到目标元素,返回 -1 return -1; } ``` === "C++" ```cpp title="binary_search.cpp" /* 二分查找(左闭右开) */ int binarySearch1(vector& nums, int target) { // 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1 int i = 0, j = nums.size(); // 循环,当搜索区间为空时跳出(当 i = j 时为空) while (i < j) { int m = (i + j) / 2; // 计算中点索引 m if (nums[m] < target) // 此情况说明 target 在区间 [m+1, j) 中 i = m + 1; else if (nums[m] > target) // 此情况说明 target 在区间 [i, m) 中 j = m; else // 找到目标元素,返回其索引 return m; } // 未找到目标元素,返回 -1 return -1; } ``` === "Python" ```python title="binary_search.py" """ 二分查找(左闭右开) """ def binary_search1(nums, target): # 初始化左闭右开 [0, n) ,即 i, j 分别指向数组首元素、尾元素+1 i, j = 0, len(nums) # 循环,当搜索区间为空时跳出(当 i = j 时为空) while i < j: m = (i + j) // 2 # 计算中点索引 m if nums[m] < target: # 此情况说明 target 在区间 [m+1, j) 中 i = m + 1 elif nums[m] > target: # 此情况说明 target 在区间 [i, m) 中 j = m else: # 找到目标元素,返回其索引 return m return -1 # 未找到目标元素,返回 -1 ``` === "Go" ```go title="binary_search.go" ``` === "JavaScript" ```js title="binary_search.js" ``` === "TypeScript" ```typescript title="binary_search.ts" ``` === "C" ```c title="binary_search.c" ``` === "C#" ```csharp title="binary_search.cs" ``` ### 两种表示对比 对比下来,两种表示的代码写法有以下不同点:
| 表示方法 | 初始化指针 | 缩小区间 | 循环终止条件 | | ------------------- | ------------------- | ------------------------- | ------------ | | 双闭区间 $[0, n-1]$ | $i = 0$ , $j = n-1$ | $i = m + 1$ , $j = m - 1$ | $i > j$ | | 左闭右开 $[0, n)$ | $i = 0$ , $j = n$ | $i = m + 1$ , $j = m$ | $i = j$ |
观察发现,在 “双闭区间” 表示中,由于对左右两边界的定义是相同的,因此缩小区间的 $i$ , $j$ 处理方法也是对称的,这样更不容易出错。综上所述,**建议你采用 “双闭区间” 的写法。** ### 大数越界处理 当数组长度很大时,加法 $i + j$ 的结果有可能会超出 `int` 类型的取值范围。在此情况下,我们需要换一种计算中点的写法。 === "Java" ```java title="" // (i + j) 有可能超出 int 的取值范围 int m = (i + j) / 2; // 更换为此写法则不会越界 int m = i + (j - i) / 2; ``` === "C++" ```cpp title="" // (i + j) 有可能超出 int 的取值范围 int m = (i + j) / 2; // 更换为此写法则不会越界 int m = i + (j - i) / 2; ``` === "Python" ```py title="" # Python 中的数字理论上可以无限大(取决于内存大小) # 因此无需考虑大数越界问题 ``` === "Go" ```go title="" ``` === "JavaScript" ```js title="" ``` === "TypeScript" ```typescript title="" ``` === "C" ```c title="" ``` === "C#" ```csharp title="" ``` ## 复杂度分析 **时间复杂度 $O(\log n)$ :** 其中 $n$ 为数组或链表长度;每轮排除一半的区间,因此循环轮数为 $\log_2 n$ ,使用 $O(\log n)$ 时间。 **空间复杂度 $O(1)$ :** 指针 `i` , `j` 使用常数大小空间。 ## 优缺点 二分查找效率很高,体现在: - **二分查找时间复杂度低。** 对数阶在数据量很大时具有巨大优势,例如,当数据大小 $n = 2^{20}$ 时,线性查找需要 $2^{20} = 1048576$ 轮循环,而二分查找仅需要 $\log_2 2^{20} = 20$ 轮循环。 - **二分查找不需要额外空间。** 相对于借助额外数据结构来实现查找的算法来说,其更加节约空间使用。 但并不意味着所有情况下都应使用二分查找,这是因为: - **二分查找仅适用于有序数据。** 如果输入数据是乱序的,为了使用二分查找而专门执行数据排序,那么是得不偿失的,因为排序算法的时间复杂度一般为 $O(n \log n)$ ,比线性查找和二分查找都更差。再例如,对于频繁插入元素的场景,为了保持数组的有序性,需要将元素插入到特定位置,时间复杂度为 $O(n)$ ,也是非常昂贵的。 - **二分查找仅适用于数组。** 由于在二分查找中,访问索引是 ”非连续“ 的,因此链表或者基于链表实现的数据结构都无法使用。 - **在小数据量下,线性查找的性能更好。** 在线性查找中,每轮只需要 1 次判断操作;而在二分查找中,需要 1 次加法、1 次除法、1 ~ 3 次判断操作、1 次加法(减法),共 4 ~ 6 个单元操作;因此,在数据量 $n$ 较小时,线性查找反而比二分查找更快。