hello-algo/chapter_computational_complexity/time_complexity/index.html
Yudong Jin 7a00ea3324 deploy
2022-12-13 01:36:54 +08:00

2994 lines
256 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!doctype html>
<html lang="zh" class="no-js">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width,initial-scale=1">
<meta name="description" content="Your first book to learn Data Structure And Algorithm.">
<meta name="author" content="Krahets">
<link rel="canonical" href="https://www.hello-algo.com/chapter_computational_complexity/time_complexity/">
<link rel="icon" href="../../assets/images/favicon.png">
<meta name="generator" content="mkdocs-1.4.2, mkdocs-material-9.0.0b3">
<title>时间复杂度 - Hello 算法</title>
<link rel="stylesheet" href="../../assets/stylesheets/main.91872f81.min.css">
<link rel="stylesheet" href="../../assets/stylesheets/palette.2505c338.min.css">
<link rel="preconnect" href="https://fonts.gstatic.com" crossorigin>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Roboto:300,300i,400,400i,700,700i%7CRoboto+Mono:400,400i,700,700i&display=fallback">
<style>:root{--md-text-font:"Roboto";--md-code-font:"Roboto Mono"}</style>
<link rel="stylesheet" href="../../stylesheets/extra.css">
<script>__md_scope=new URL("../..",location),__md_hash=e=>[...e].reduce((e,_)=>(e<<5)-e+_.charCodeAt(0),0),__md_get=(e,_=localStorage,t=__md_scope)=>JSON.parse(_.getItem(t.pathname+"."+e)),__md_set=(e,_,t=localStorage,a=__md_scope)=>{try{t.setItem(a.pathname+"."+e,JSON.stringify(_))}catch(e){}}</script>
</head>
<body dir="ltr" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="">
<script>var palette=__md_get("__palette");if(palette&&"object"==typeof palette.color)for(var key of Object.keys(palette.color))document.body.setAttribute("data-md-color-"+key,palette.color[key])</script>
<input class="md-toggle" data-md-toggle="drawer" type="checkbox" id="__drawer" autocomplete="off">
<input class="md-toggle" data-md-toggle="search" type="checkbox" id="__search" autocomplete="off">
<label class="md-overlay" for="__drawer"></label>
<div data-md-component="skip">
<a href="#_1" class="md-skip">
跳转至
</a>
</div>
<div data-md-component="announce">
</div>
<header class="md-header" data-md-component="header">
<nav class="md-header__inner md-grid" aria-label="页眉">
<a href="../.." title="Hello 算法" class="md-header__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
<label class="md-header__button md-icon" for="__drawer">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M3 6h18v2H3V6m0 5h18v2H3v-2m0 5h18v2H3v-2Z"/></svg>
</label>
<div class="md-header__title" data-md-component="header-title">
<div class="md-header__ellipsis">
<div class="md-header__topic">
<span class="md-ellipsis">
Hello 算法
</span>
</div>
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
时间复杂度
</span>
</div>
</div>
</div>
<form class="md-header__option" data-md-component="palette">
<input class="md-option" data-md-color-media="" data-md-color-scheme="default" data-md-color-primary="white" data-md-color-accent="" aria-label="Switch to dark mode" type="radio" name="__palette" id="__palette_1">
<label class="md-header__button md-icon" title="Switch to dark mode" for="__palette_2" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M12 7a5 5 0 0 1 5 5 5 5 0 0 1-5 5 5 5 0 0 1-5-5 5 5 0 0 1 5-5m0 2a3 3 0 0 0-3 3 3 3 0 0 0 3 3 3 3 0 0 0 3-3 3 3 0 0 0-3-3m0-7 2.39 3.42C13.65 5.15 12.84 5 12 5c-.84 0-1.65.15-2.39.42L12 2M3.34 7l4.16-.35A7.2 7.2 0 0 0 5.94 8.5c-.44.74-.69 1.5-.83 2.29L3.34 7m.02 10 1.76-3.77a7.131 7.131 0 0 0 2.38 4.14L3.36 17M20.65 7l-1.77 3.79a7.023 7.023 0 0 0-2.38-4.15l4.15.36m-.01 10-4.14.36c.59-.51 1.12-1.14 1.54-1.86.42-.73.69-1.5.83-2.29L20.64 17M12 22l-2.41-3.44c.74.27 1.55.44 2.41.44.82 0 1.63-.17 2.37-.44L12 22Z"/></svg>
</label>
<input class="md-option" data-md-color-media="" data-md-color-scheme="slate" data-md-color-primary="" data-md-color-accent="" aria-label="Switch to light mode" type="radio" name="__palette" id="__palette_2">
<label class="md-header__button md-icon" title="Switch to light mode" for="__palette_1" hidden>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="m17.75 4.09-2.53 1.94.91 3.06-2.63-1.81-2.63 1.81.91-3.06-2.53-1.94L12.44 4l1.06-3 1.06 3 3.19.09m3.5 6.91-1.64 1.25.59 1.98-1.7-1.17-1.7 1.17.59-1.98L15.75 11l2.06-.05L18.5 9l.69 1.95 2.06.05m-2.28 4.95c.83-.08 1.72 1.1 1.19 1.85-.32.45-.66.87-1.08 1.27C15.17 23 8.84 23 4.94 19.07c-3.91-3.9-3.91-10.24 0-14.14.4-.4.82-.76 1.27-1.08.75-.53 1.93.36 1.85 1.19-.27 2.86.69 5.83 2.89 8.02a9.96 9.96 0 0 0 8.02 2.89m-1.64 2.02a12.08 12.08 0 0 1-7.8-3.47c-2.17-2.19-3.33-5-3.49-7.82-2.81 3.14-2.7 7.96.31 10.98 3.02 3.01 7.84 3.12 10.98.31Z"/></svg>
</label>
</form>
<label class="md-header__button md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
</label>
<div class="md-search" data-md-component="search" role="dialog">
<label class="md-search__overlay" for="__search"></label>
<div class="md-search__inner" role="search">
<form class="md-search__form" name="search">
<input type="text" class="md-search__input" name="query" aria-label="搜索" placeholder="搜索" autocapitalize="off" autocorrect="off" autocomplete="off" spellcheck="false" data-md-component="search-query" required>
<label class="md-search__icon md-icon" for="__search">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M9.5 3A6.5 6.5 0 0 1 16 9.5c0 1.61-.59 3.09-1.56 4.23l.27.27h.79l5 5-1.5 1.5-5-5v-.79l-.27-.27A6.516 6.516 0 0 1 9.5 16 6.5 6.5 0 0 1 3 9.5 6.5 6.5 0 0 1 9.5 3m0 2C7 5 5 7 5 9.5S7 14 9.5 14 14 12 14 9.5 12 5 9.5 5Z"/></svg>
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</label>
<nav class="md-search__options" aria-label="查找">
<a href="javascript:void(0)" class="md-search__icon md-icon" title="分享" aria-label="分享" data-clipboard data-clipboard-text="" data-md-component="search-share" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M18 16.08c-.76 0-1.44.3-1.96.77L8.91 12.7c.05-.23.09-.46.09-.7 0-.24-.04-.47-.09-.7l7.05-4.11c.54.5 1.25.81 2.04.81a3 3 0 0 0 3-3 3 3 0 0 0-3-3 3 3 0 0 0-3 3c0 .24.04.47.09.7L8.04 9.81C7.5 9.31 6.79 9 6 9a3 3 0 0 0-3 3 3 3 0 0 0 3 3c.79 0 1.5-.31 2.04-.81l7.12 4.15c-.05.21-.08.43-.08.66 0 1.61 1.31 2.91 2.92 2.91 1.61 0 2.92-1.3 2.92-2.91A2.92 2.92 0 0 0 18 16.08Z"/></svg>
</a>
<button type="reset" class="md-search__icon md-icon" title="清空当前内容" aria-label="清空当前内容" tabindex="-1">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M19 6.41 17.59 5 12 10.59 6.41 5 5 6.41 10.59 12 5 17.59 6.41 19 12 13.41 17.59 19 19 17.59 13.41 12 19 6.41Z"/></svg>
</button>
</nav>
<div class="md-search__suggest" data-md-component="search-suggest"></div>
</form>
<div class="md-search__output">
<div class="md-search__scrollwrap" data-md-scrollfix>
<div class="md-search-result" data-md-component="search-result">
<div class="md-search-result__meta">
正在初始化搜索引擎
</div>
<ol class="md-search-result__list"></ol>
</div>
</div>
</div>
</div>
</div>
<div class="md-header__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
</nav>
</header>
<div class="md-container" data-md-component="container">
<main class="md-main" data-md-component="main">
<div class="md-main__inner md-grid">
<div class="md-sidebar md-sidebar--primary" data-md-component="sidebar" data-md-type="navigation" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--primary" aria-label="导航栏" data-md-level="0">
<label class="md-nav__title" for="__drawer">
<a href="../.." title="Hello 算法" class="md-nav__button md-logo" aria-label="Hello 算法" data-md-component="logo">
<img src="../../assets/images/logo.png" alt="logo">
</a>
Hello 算法
</label>
<div class="md-nav__source">
<a href="https://github.com/krahets/hello-algo" title="前往仓库" class="md-source" data-md-component="source">
<div class="md-source__icon md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</div>
<div class="md-source__repository">
krahets/hello-algo
</div>
</a>
</div>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_1" type="checkbox" id="__nav_1" >
<label class="md-nav__link" for="__nav_1">
写在前面
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="写在前面" data-md-level="1">
<label class="md-nav__title" for="__nav_1">
<span class="md-nav__icon md-icon"></span>
写在前面
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_preface/about_the_book/" class="md-nav__link">
关于本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/suggestions/" class="md-nav__link">
如何使用本书
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/installation/" class="md-nav__link">
编程环境安装
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_preface/contribution/" class="md-nav__link">
一起参与创作
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_2" type="checkbox" id="__nav_2" >
<label class="md-nav__link" for="__nav_2">
引言
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="引言" data-md-level="1">
<label class="md-nav__title" for="__nav_2">
<span class="md-nav__icon md-icon"></span>
引言
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_introduction/algorithms_are_everywhere/" class="md-nav__link">
算法无处不在
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_introduction/what_is_dsa/" class="md-nav__link">
算法是什么
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--active md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_3" type="checkbox" id="__nav_3" checked>
<label class="md-nav__link" for="__nav_3">
计算复杂度
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="计算复杂度" data-md-level="1">
<label class="md-nav__title" for="__nav_3">
<span class="md-nav__icon md-icon"></span>
计算复杂度
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../performance_evaluation/" class="md-nav__link">
算法效率评估
</a>
</li>
<li class="md-nav__item md-nav__item--active">
<input class="md-nav__toggle md-toggle" data-md-toggle="toc" type="checkbox" id="__toc">
<label class="md-nav__link md-nav__link--active" for="__toc">
时间复杂度
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
时间复杂度
</a>
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#_2" class="md-nav__link">
统计算法运行时间
</a>
</li>
<li class="md-nav__item">
<a href="#_3" class="md-nav__link">
统计时间增长趋势
</a>
</li>
<li class="md-nav__item">
<a href="#_4" class="md-nav__link">
函数渐近上界
</a>
</li>
<li class="md-nav__item">
<a href="#_5" class="md-nav__link">
推算方法
</a>
<nav class="md-nav" aria-label="推算方法">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
1. 统计操作数量
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
2. 判断渐近上界
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#_6" class="md-nav__link">
常见类型
</a>
<nav class="md-nav" aria-label="常见类型">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#o1" class="md-nav__link">
常数阶 \(O(1)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on" class="md-nav__link">
线性阶 \(O(n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on2" class="md-nav__link">
平方阶 \(O(n^2)\)
</a>
</li>
<li class="md-nav__item">
<a href="#o2n" class="md-nav__link">
指数阶 \(O(2^n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#olog-n" class="md-nav__link">
对数阶 \(O(\log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on-log-n" class="md-nav__link">
线性对数阶 \(O(n \log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on_1" class="md-nav__link">
阶乘阶 \(O(n!)\)
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#_7" class="md-nav__link">
最差、最佳、平均时间复杂度
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="../space_complexity/" class="md-nav__link">
空间复杂度
</a>
</li>
<li class="md-nav__item">
<a href="../space_time_tradeoff/" class="md-nav__link">
权衡时间与空间
</a>
</li>
<li class="md-nav__item">
<a href="../summary/" class="md-nav__link">
小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_4" type="checkbox" id="__nav_4" >
<label class="md-nav__link" for="__nav_4">
数据结构简介
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="数据结构简介" data-md-level="1">
<label class="md-nav__title" for="__nav_4">
<span class="md-nav__icon md-icon"></span>
数据结构简介
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_data_structure/data_and_memory/" class="md-nav__link">
数据与内存
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/classification_of_data_strcuture/" class="md-nav__link">
数据结构分类
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_data_structure/summary/" class="md-nav__link">
小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_5" type="checkbox" id="__nav_5" >
<label class="md-nav__link" for="__nav_5">
数组与链表
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="数组与链表" data-md-level="1">
<label class="md-nav__title" for="__nav_5">
<span class="md-nav__icon md-icon"></span>
数组与链表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/array/" class="md-nav__link">
数组Array
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/linked_list/" class="md-nav__link">
链表LinkedList
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/list/" class="md-nav__link">
列表List
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_array_and_linkedlist/summary/" class="md-nav__link">
小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_6" type="checkbox" id="__nav_6" >
<label class="md-nav__link" for="__nav_6">
栈与队列
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="栈与队列" data-md-level="1">
<label class="md-nav__title" for="__nav_6">
<span class="md-nav__icon md-icon"></span>
栈与队列
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/stack/" class="md-nav__link">
Stack
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/queue/" class="md-nav__link">
队列Queue
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/deque/" class="md-nav__link">
双向队列Deque
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_stack_and_queue/summary/" class="md-nav__link">
小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_7" type="checkbox" id="__nav_7" >
<label class="md-nav__link" for="__nav_7">
散列表
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="散列表" data-md-level="1">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
散列表
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
哈希表HashMap
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
哈希冲突处理
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_8" type="checkbox" id="__nav_8" >
<label class="md-nav__link" for="__nav_8">
二叉树
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="二叉树" data-md-level="1">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
二叉树
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
二叉树Binary Tree
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_types/" class="md-nav__link">
二叉树常见类型
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
二叉搜索树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
AVL 树 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_9" type="checkbox" id="__nav_9" >
<label class="md-nav__link" for="__nav_9">
查找算法
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="查找算法" data-md-level="1">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
查找算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/linear_search/" class="md-nav__link">
线性查找
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
二分查找
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/hashing_search/" class="md-nav__link">
哈希查找
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_10" type="checkbox" id="__nav_10" >
<label class="md-nav__link" for="__nav_10">
排序算法
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" aria-label="排序算法" data-md-level="1">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
排序算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_sorting/intro_to_sort/" class="md-nav__link">
排序简介
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/bubble_sort/" class="md-nav__link">
冒泡排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/insertion_sort/" class="md-nav__link">
插入排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/quick_sort/" class="md-nav__link">
快速排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/merge_sort/" class="md-nav__link">
归并排序
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_sorting/summary/" class="md-nav__link">
小结
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle" data-md-toggle="__nav_11" type="checkbox" id="__nav_11" >
<div class="md-nav__link md-nav__link--index ">
<a href="../../chapter_reference/">参考文献</a>
</div>
<nav class="md-nav" aria-label="参考文献" data-md-level="1">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
参考文献
</label>
<ul class="md-nav__list" data-md-scrollfix>
</ul>
</nav>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-sidebar md-sidebar--secondary" data-md-component="sidebar" data-md-type="toc" >
<div class="md-sidebar__scrollwrap">
<div class="md-sidebar__inner">
<nav class="md-nav md-nav--secondary" aria-label="目录">
<label class="md-nav__title" for="__toc">
<span class="md-nav__icon md-icon"></span>
目录
</label>
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#_2" class="md-nav__link">
统计算法运行时间
</a>
</li>
<li class="md-nav__item">
<a href="#_3" class="md-nav__link">
统计时间增长趋势
</a>
</li>
<li class="md-nav__item">
<a href="#_4" class="md-nav__link">
函数渐近上界
</a>
</li>
<li class="md-nav__item">
<a href="#_5" class="md-nav__link">
推算方法
</a>
<nav class="md-nav" aria-label="推算方法">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#1" class="md-nav__link">
1. 统计操作数量
</a>
</li>
<li class="md-nav__item">
<a href="#2" class="md-nav__link">
2. 判断渐近上界
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#_6" class="md-nav__link">
常见类型
</a>
<nav class="md-nav" aria-label="常见类型">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#o1" class="md-nav__link">
常数阶 \(O(1)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on" class="md-nav__link">
线性阶 \(O(n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on2" class="md-nav__link">
平方阶 \(O(n^2)\)
</a>
</li>
<li class="md-nav__item">
<a href="#o2n" class="md-nav__link">
指数阶 \(O(2^n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#olog-n" class="md-nav__link">
对数阶 \(O(\log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on-log-n" class="md-nav__link">
线性对数阶 \(O(n \log n)\)
</a>
</li>
<li class="md-nav__item">
<a href="#on_1" class="md-nav__link">
阶乘阶 \(O(n!)\)
</a>
</li>
</ul>
</nav>
</li>
<li class="md-nav__item">
<a href="#_7" class="md-nav__link">
最差、最佳、平均时间复杂度
</a>
</li>
</ul>
</nav>
</div>
</div>
</div>
<div class="md-content" data-md-component="content">
<article class="md-content__inner md-typeset">
<a href="https://github.com/krahets/hello-algo/tree/master/docs/chapter_computational_complexity/time_complexity.md" title="编辑此页" class="md-content__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20.71 7.04c.39-.39.39-1.04 0-1.41l-2.34-2.34c-.37-.39-1.02-.39-1.41 0l-1.84 1.83 3.75 3.75M3 17.25V21h3.75L17.81 9.93l-3.75-3.75L3 17.25Z"/></svg>
</a>
<h1 id="_1">时间复杂度<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h1>
<h2 id="_2">统计算法运行时间<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<p>运行时间能够直观且准确地体现出算法的效率水平。如果我们想要 <strong>准确预估一段代码的运行时间</strong> ,该如何做呢?</p>
<ol>
<li>首先需要 <strong>确定运行平台</strong> ,包括硬件配置、编程语言、系统环境等,这些都会影响到代码的运行效率。</li>
<li>评估 <strong>各种计算操作的所需运行时间</strong> ,例如加法操作 <code>+</code> 需要 1 ns ,乘法操作 <code>*</code> 需要 10 ns ,打印操作需要 5 ns 等。</li>
<li>根据代码 <strong>统计所有计算操作的数量</strong> ,并将所有操作的执行时间求和,即可得到运行时间。</li>
</ol>
<p>例如以下代码,输入数据大小为 <span class="arithmatex">\(n\)</span> ,根据以上方法,可以得到算法运行时间为 <span class="arithmatex">\(6n + 12\)</span> ns 。</p>
<div class="arithmatex">\[
1 + 1 + 10 + (1 + 5) \times n = 6n + 12
\]</div>
<div class="tabbed-set tabbed-alternate" data-tabs="1:8"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JavaScript</label><label for="__tabbed_1_6">TypeScript</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="c1">// 在某运行平台下</span><span class="w"></span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span><span class="w"></span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span><span class="w"></span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span><span class="w"></span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span><span class="w"></span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span><span class="w"></span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// 5 ns</span><span class="w"></span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-1-1" name="__codelineno-1-1" href="#__codelineno-1-1"></a><span class="c1">// 在某运行平台下</span>
<a id="__codelineno-1-2" name="__codelineno-1-2" href="#__codelineno-1-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-1-3" name="__codelineno-1-3" href="#__codelineno-1-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-1-4" name="__codelineno-1-4" href="#__codelineno-1-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// 1 ns</span>
<a id="__codelineno-1-5" name="__codelineno-1-5" href="#__codelineno-1-5"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// 10 ns</span>
<a id="__codelineno-1-6" name="__codelineno-1-6" href="#__codelineno-1-6"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-1-7" name="__codelineno-1-7" href="#__codelineno-1-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// 1 ns ,每轮都要执行 i++</span>
<a id="__codelineno-1-8" name="__codelineno-1-8" href="#__codelineno-1-8"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"> </span><span class="c1">// 5 ns</span>
<a id="__codelineno-1-9" name="__codelineno-1-9" href="#__codelineno-1-9"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-1-10" name="__codelineno-1-10" href="#__codelineno-1-10"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-2-1" name="__codelineno-2-1" href="#__codelineno-2-1"></a><span class="c1"># 在某运行平台下</span>
<a id="__codelineno-2-2" name="__codelineno-2-2" href="#__codelineno-2-2"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-2-3" name="__codelineno-2-3" href="#__codelineno-2-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">2</span> <span class="c1"># 1 ns</span>
<a id="__codelineno-2-4" name="__codelineno-2-4" href="#__codelineno-2-4"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># 1 ns</span>
<a id="__codelineno-2-5" name="__codelineno-2-5" href="#__codelineno-2-5"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1"># 10 ns</span>
<a id="__codelineno-2-6" name="__codelineno-2-6" href="#__codelineno-2-6"></a> <span class="c1"># 循环 n 次</span>
<a id="__codelineno-2-7" name="__codelineno-2-7" href="#__codelineno-2-7"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c1"># 1 ns</span>
<a id="__codelineno-2-8" name="__codelineno-2-8" href="#__codelineno-2-8"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># 5 ns</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-6-1" name="__codelineno-6-1" href="#__codelineno-6-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p>但实际上, <strong>统计算法的运行时间既不合理也不现实。</strong> 首先,我们不希望预估时间和运行平台绑定,毕竟算法需要跑在各式各样的平台之上。其次,我们很难获知每一种操作的运行时间,这为预估过程带来了极大的难度。</p>
<h2 id="_3">统计时间增长趋势<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h2>
<p>「时间复杂度分析」采取了不同的做法,其统计的不是算法运行时间,而是 <strong>算法运行时间随着数据量变大时的增长趋势</strong></p>
<p>“时间增长趋势” 这个概念比较抽象,我们借助一个例子来理解。设输入数据大小为 <span class="arithmatex">\(n\)</span> ,给定三个算法 <code>A</code> , <code>B</code> , <code>C</code></p>
<ul>
<li>算法 <code>A</code> 只有 <span class="arithmatex">\(1\)</span> 个打印操作,算法运行时间不随着 <span class="arithmatex">\(n\)</span> 增大而增长。我们称此算法的时间复杂度为「常数阶」。</li>
<li>算法 <code>B</code> 中的打印操作需要循环 <span class="arithmatex">\(n\)</span> 次,算法运行时间随着 <span class="arithmatex">\(n\)</span> 增大成线性增长。此算法的时间复杂度被称为「线性阶」。</li>
<li>算法 <code>C</code> 中的打印操作需要循环 <span class="arithmatex">\(1000000\)</span> 次,但运行时间仍与输入数据大小 <span class="arithmatex">\(n\)</span> 无关。因此 <code>C</code> 的时间复杂度和 <code>A</code> 相同,仍为「常数阶」。</li>
</ul>
<div class="tabbed-set tabbed-alternate" data-tabs="2:8"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JavaScript</label><label for="__tabbed_2_6">TypeScript</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span><span class="w"></span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a><span class="p">}</span><span class="w"></span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span><span class="w"></span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a><span class="p">}</span><span class="w"></span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span><span class="w"></span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-9-1" name="__codelineno-9-1" href="#__codelineno-9-1"></a><span class="c1">// 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-9-2" name="__codelineno-9-2" href="#__codelineno-9-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_A</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-9-3" name="__codelineno-9-3" href="#__codelineno-9-3"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-9-4" name="__codelineno-9-4" href="#__codelineno-9-4"></a><span class="p">}</span><span class="w"></span>
<a id="__codelineno-9-5" name="__codelineno-9-5" href="#__codelineno-9-5"></a><span class="c1">// 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-9-6" name="__codelineno-9-6" href="#__codelineno-9-6"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_B</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-9-7" name="__codelineno-9-7" href="#__codelineno-9-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-9-8" name="__codelineno-9-8" href="#__codelineno-9-8"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-9-9" name="__codelineno-9-9" href="#__codelineno-9-9"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-9-10" name="__codelineno-9-10" href="#__codelineno-9-10"></a><span class="p">}</span><span class="w"></span>
<a id="__codelineno-9-11" name="__codelineno-9-11" href="#__codelineno-9-11"></a><span class="c1">// 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-9-12" name="__codelineno-9-12" href="#__codelineno-9-12"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm_C</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-9-13" name="__codelineno-9-13" href="#__codelineno-9-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">1000000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-9-14" name="__codelineno-9-14" href="#__codelineno-9-14"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-9-15" name="__codelineno-9-15" href="#__codelineno-9-15"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-9-16" name="__codelineno-9-16" href="#__codelineno-9-16"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-10-1" name="__codelineno-10-1" href="#__codelineno-10-1"></a><span class="c1"># 算法 A 时间复杂度:常数阶</span>
<a id="__codelineno-10-2" name="__codelineno-10-2" href="#__codelineno-10-2"></a><span class="k">def</span> <span class="nf">algorithm_A</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-10-3" name="__codelineno-10-3" href="#__codelineno-10-3"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-10-4" name="__codelineno-10-4" href="#__codelineno-10-4"></a><span class="c1"># 算法 B 时间复杂度:线性阶</span>
<a id="__codelineno-10-5" name="__codelineno-10-5" href="#__codelineno-10-5"></a><span class="k">def</span> <span class="nf">algorithm_B</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-10-6" name="__codelineno-10-6" href="#__codelineno-10-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-10-7" name="__codelineno-10-7" href="#__codelineno-10-7"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-10-8" name="__codelineno-10-8" href="#__codelineno-10-8"></a><span class="c1"># 算法 C 时间复杂度:常数阶</span>
<a id="__codelineno-10-9" name="__codelineno-10-9" href="#__codelineno-10-9"></a><span class="k">def</span> <span class="nf">algorithm_C</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-10-10" name="__codelineno-10-10" href="#__codelineno-10-10"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1000000</span><span class="p">):</span>
<a id="__codelineno-10-11" name="__codelineno-10-11" href="#__codelineno-10-11"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-11-1" name="__codelineno-11-1" href="#__codelineno-11-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-12-1" name="__codelineno-12-1" href="#__codelineno-12-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-13-1" name="__codelineno-13-1" href="#__codelineno-13-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-14-1" name="__codelineno-14-1" href="#__codelineno-14-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-15-1" name="__codelineno-15-1" href="#__codelineno-15-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="time_complexity_first_example" src="../time_complexity.assets/time_complexity_first_example.png" /></p>
<p align="center"> Fig. 算法 A, B, C 的时间增长趋势 </p>
<p>相比直接统计算法运行时间,时间复杂度分析的做法有什么好处呢?以及有什么不足?</p>
<p><strong>时间复杂度可以有效评估算法效率。</strong> 算法 <code>B</code> 运行时间的增长是线性的,在 <span class="arithmatex">\(n &gt; 1\)</span> 时慢于算法 <code>A</code> ,在 <span class="arithmatex">\(n &gt; 1000000\)</span> 时慢于算法 <code>C</code> 。实质上,只要输入数据大小 <span class="arithmatex">\(n\)</span> 足够大,复杂度为「常数阶」的算法一定优于「线性阶」的算法,这也正是时间增长趋势的含义。</p>
<p><strong>时间复杂度分析将统计「计算操作的运行时间」简化为统计「计算操作的数量」。</strong> 这是因为,无论是运行平台、还是计算操作类型,都与算法运行时间的增长趋势无关。因此,我们可以简单地将所有计算操作的执行时间统一看作是相同的 “单位时间” 。</p>
<p><strong>时间复杂度也存在一定的局限性。</strong> 比如,虽然算法 <code>A</code><code>C</code> 的时间复杂度相同,但是实际的运行时间有非常大的差别。再比如,虽然算法 <code>B</code><code>C</code> 的时间复杂度要更高,但在输入数据大小 <span class="arithmatex">\(n\)</span> 比较小时,算法 <code>B</code> 是要明显优于算法 <code>C</code> 的。即使存在这些问题,计算复杂度仍然是评判算法效率的最有效、最常用方法。</p>
<h2 id="_4">函数渐近上界<a class="headerlink" href="#_4" title="Permanent link">&para;</a></h2>
<p>设算法「计算操作数量」为 <span class="arithmatex">\(T(n)\)</span> ,其是一个关于输入数据大小 <span class="arithmatex">\(n\)</span> 的函数。例如,以下算法的操作数量为</p>
<div class="arithmatex">\[
T(n) = 3 + 2n
\]</div>
<div class="tabbed-set tabbed-alternate" data-tabs="3:8"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JavaScript</label><label for="__tabbed_3_6">TypeScript</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span><span class="w"></span>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span><span class="w"></span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span><span class="w"></span>
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span><span class="w"></span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span><span class="w"></span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"> </span><span class="c1">// +1</span><span class="w"></span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="c1">// 循环 n 次</span>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// +1每轮都执行 i ++</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"> </span><span class="c1">// +1</span>
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-18-1" name="__codelineno-18-1" href="#__codelineno-18-1"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-18-2" name="__codelineno-18-2" href="#__codelineno-18-2"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># +1</span>
<a id="__codelineno-18-3" name="__codelineno-18-3" href="#__codelineno-18-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="mi">1</span> <span class="c1"># +1</span>
<a id="__codelineno-18-4" name="__codelineno-18-4" href="#__codelineno-18-4"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">*</span> <span class="mi">2</span> <span class="c1"># +1</span>
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a> <span class="c1"># 循环 n 次</span>
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span> <span class="c1"># +1</span>
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span> <span class="c1"># +1</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-19-1" name="__codelineno-19-1" href="#__codelineno-19-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-20-1" name="__codelineno-20-1" href="#__codelineno-20-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-21-1" name="__codelineno-21-1" href="#__codelineno-21-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-22-1" name="__codelineno-22-1" href="#__codelineno-22-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-23-1" name="__codelineno-23-1" href="#__codelineno-23-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p><span class="arithmatex">\(T(n)\)</span> 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。</p>
<p>我们将线性阶的时间复杂度记为 <span class="arithmatex">\(O(n)\)</span> ,这个数学符号被称为「大 <span class="arithmatex">\(O\)</span> 记号 Big-<span class="arithmatex">\(O\)</span> Notation」代表函数 <span class="arithmatex">\(T(n)\)</span> 的「渐近上界 asymptotic upper bound」。</p>
<p>我们要推算时间复杂度,本质上是在计算「操作数量函数 <span class="arithmatex">\(T(n)\)</span> 」的渐近上界。下面我们先来看看函数渐近上界的数学定义。</p>
<div class="admonition abstract">
<p class="admonition-title">函数渐近上界</p>
<p>若存在正实数 <span class="arithmatex">\(c\)</span> 和实数 <span class="arithmatex">\(n_0\)</span> ,使得对于所有的 <span class="arithmatex">\(n &gt; n_0\)</span> ,均有
$$
T(n) \leq c \cdot f(n)
$$
则可认为 <span class="arithmatex">\(f(n)\)</span> 给出了 <span class="arithmatex">\(T(n)\)</span> 的一个渐近上界,记为
$$
T(n) = O(f(n))
$$</p>
</div>
<p><img alt="asymptotic_upper_bound" src="../time_complexity.assets/asymptotic_upper_bound.png" /></p>
<p align="center"> Fig. 函数的渐近上界 </p>
<p>本质上看,计算渐近上界就是在找一个函数 <span class="arithmatex">\(f(n)\)</span> <strong>使得在 <span class="arithmatex">\(n\)</span> 趋向于无穷大时,<span class="arithmatex">\(T(n)\)</span><span class="arithmatex">\(f(n)\)</span> 处于相同的增长级别(仅相差一个常数项 <span class="arithmatex">\(c\)</span> 的倍数)</strong></p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>渐近上界的数学味儿有点重,如果你感觉没有完全理解,无需担心,因为在实际使用中我们只需要会推算即可,数学意义可以慢慢领悟。</p>
</div>
<h2 id="_5">推算方法<a class="headerlink" href="#_5" title="Permanent link">&para;</a></h2>
<p>推算出 <span class="arithmatex">\(f(n)\)</span> 后,我们就得到时间复杂度 <span class="arithmatex">\(O(f(n))\)</span> 。那么,如何来确定渐近上界 <span class="arithmatex">\(f(n)\)</span> 呢?总体分为两步,首先「统计操作数量」,然后「判断渐近上界」。</p>
<h3 id="1">1. 统计操作数量<a class="headerlink" href="#1" title="Permanent link">&para;</a></h3>
<p>对着代码,从上到下一行一行地计数即可。然而,<strong>由于上述 <span class="arithmatex">\(c \cdot f(n)\)</span> 中的常数项 <span class="arithmatex">\(c\)</span> 可以取任意大小,因此操作数量 <span class="arithmatex">\(T(n)\)</span> 中的各种系数、常数项都可以被忽略</strong>。根据此原则,可以总结出以下计数偷懒技巧:</p>
<ol>
<li><strong>跳过数量与 <span class="arithmatex">\(n\)</span> 无关的操作。</strong> 因为他们都是 <span class="arithmatex">\(T(n)\)</span> 中的常数项,对时间复杂度不产生影响。</li>
<li><strong>省略所有系数。</strong> 例如,循环 <span class="arithmatex">\(2n\)</span> 次、<span class="arithmatex">\(5n + 1\)</span> 次、……,都可以化简记为 <span class="arithmatex">\(n\)</span> 次,因为 <span class="arithmatex">\(n\)</span> 前面的系数对时间复杂度也不产生影响。</li>
<li><strong>循环嵌套时使用乘法。</strong> 总操作数量等于外层循环和内层循环操作数量之积,每一层循环依然可以分别套用上述 <code>1.</code><code>2.</code> 技巧。</li>
</ol>
<p>根据以下示例,使用上述技巧前、后的统计结果分别为</p>
<div class="arithmatex">\[
\begin{aligned}
T(n) &amp; = 2n(n + 1) + (5n + 1) + 2 &amp; \text{完整统计 (-.-|||)} \newline
&amp; = 2n^2 + 7n + 3 \newline
T(n) &amp; = n^2 + n &amp; \text{偷懒统计 (o.O)}
\end{aligned}
\]</div>
<p>最终,两者都能推出相同的时间复杂度结果,即 <span class="arithmatex">\(O(n^2)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="4:8"><input checked="checked" id="__tabbed_4_1" name="__tabbed_4" type="radio" /><input id="__tabbed_4_2" name="__tabbed_4" type="radio" /><input id="__tabbed_4_3" name="__tabbed_4" type="radio" /><input id="__tabbed_4_4" name="__tabbed_4" type="radio" /><input id="__tabbed_4_5" name="__tabbed_4" type="radio" /><input id="__tabbed_4_6" name="__tabbed_4" type="radio" /><input id="__tabbed_4_7" name="__tabbed_4" type="radio" /><input id="__tabbed_4_8" name="__tabbed_4" type="radio" /><div class="tabbed-labels"><label for="__tabbed_4_1">Java</label><label for="__tabbed_4_2">C++</label><label for="__tabbed_4_3">Python</label><label for="__tabbed_4_4">Go</label><label for="__tabbed_4_5">JavaScript</label><label for="__tabbed_4_6">TypeScript</label><label for="__tabbed_4_7">C</label><label for="__tabbed_4_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-24-1" name="__codelineno-24-1" href="#__codelineno-24-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-24-2" name="__codelineno-24-2" href="#__codelineno-24-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span><span class="w"></span>
<a id="__codelineno-24-3" name="__codelineno-24-3" href="#__codelineno-24-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span><span class="w"></span>
<a id="__codelineno-24-4" name="__codelineno-24-4" href="#__codelineno-24-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span><span class="w"></span>
<a id="__codelineno-24-5" name="__codelineno-24-5" href="#__codelineno-24-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-24-6" name="__codelineno-24-6" href="#__codelineno-24-6"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-24-7" name="__codelineno-24-7" href="#__codelineno-24-7"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-24-8" name="__codelineno-24-8" href="#__codelineno-24-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span><span class="w"></span>
<a id="__codelineno-24-9" name="__codelineno-24-9" href="#__codelineno-24-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-24-10" name="__codelineno-24-10" href="#__codelineno-24-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-24-11" name="__codelineno-24-11" href="#__codelineno-24-11"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="mi">0</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-24-12" name="__codelineno-24-12" href="#__codelineno-24-12"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-24-13" name="__codelineno-24-13" href="#__codelineno-24-13"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-24-14" name="__codelineno-24-14" href="#__codelineno-24-14"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-25-1" name="__codelineno-25-1" href="#__codelineno-25-1"></a><span class="kt">void</span><span class="w"> </span><span class="nf">algorithm</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-25-2" name="__codelineno-25-2" href="#__codelineno-25-2"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-25-3" name="__codelineno-25-3" href="#__codelineno-25-3"></a><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">a</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="c1">// +0技巧 1</span>
<a id="__codelineno-25-4" name="__codelineno-25-4" href="#__codelineno-25-4"></a><span class="w"> </span><span class="c1">// +n技巧 2</span>
<a id="__codelineno-25-5" name="__codelineno-25-5" href="#__codelineno-25-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">5</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-25-6" name="__codelineno-25-6" href="#__codelineno-25-6"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-25-7" name="__codelineno-25-7" href="#__codelineno-25-7"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-25-8" name="__codelineno-25-8" href="#__codelineno-25-8"></a><span class="w"> </span><span class="c1">// +n*n技巧 3</span>
<a id="__codelineno-25-9" name="__codelineno-25-9" href="#__codelineno-25-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-25-10" name="__codelineno-25-10" href="#__codelineno-25-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-25-11" name="__codelineno-25-11" href="#__codelineno-25-11"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="mi">0</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-25-12" name="__codelineno-25-12" href="#__codelineno-25-12"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-25-13" name="__codelineno-25-13" href="#__codelineno-25-13"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-25-14" name="__codelineno-25-14" href="#__codelineno-25-14"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-26-1" name="__codelineno-26-1" href="#__codelineno-26-1"></a><span class="k">def</span> <span class="nf">algorithm</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-26-2" name="__codelineno-26-2" href="#__codelineno-26-2"></a> <span class="n">a</span> <span class="o">=</span> <span class="mi">1</span> <span class="c1"># +0技巧 1</span>
<a id="__codelineno-26-3" name="__codelineno-26-3" href="#__codelineno-26-3"></a> <span class="n">a</span> <span class="o">=</span> <span class="n">a</span> <span class="o">+</span> <span class="n">n</span> <span class="c1"># +0技巧 1</span>
<a id="__codelineno-26-4" name="__codelineno-26-4" href="#__codelineno-26-4"></a> <span class="c1"># +n技巧 2</span>
<a id="__codelineno-26-5" name="__codelineno-26-5" href="#__codelineno-26-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">5</span> <span class="o">*</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-26-6" name="__codelineno-26-6" href="#__codelineno-26-6"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-26-7" name="__codelineno-26-7" href="#__codelineno-26-7"></a> <span class="c1"># +n*n技巧 3</span>
<a id="__codelineno-26-8" name="__codelineno-26-8" href="#__codelineno-26-8"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span> <span class="o">*</span> <span class="n">n</span><span class="p">):</span>
<a id="__codelineno-26-9" name="__codelineno-26-9" href="#__codelineno-26-9"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-26-10" name="__codelineno-26-10" href="#__codelineno-26-10"></a> <span class="nb">print</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><pre><span></span><code><a id="__codelineno-31-1" name="__codelineno-31-1" href="#__codelineno-31-1"></a>
</code></pre></div>
</div>
</div>
</div>
<h3 id="2">2. 判断渐近上界<a class="headerlink" href="#2" title="Permanent link">&para;</a></h3>
<p><strong>时间复杂度由多项式 <span class="arithmatex">\(T(n)\)</span> 中最高阶的项来决定</strong>。这是因为在 <span class="arithmatex">\(n\)</span> 趋于无穷大时,最高阶的项将处于主导作用,其它项的影响都可以被忽略。</p>
<p>以下表格给出了一些例子,其中有一些夸张的值,是想要向大家强调 <strong>系数无法撼动阶数</strong> 这一结论。在 <span class="arithmatex">\(n\)</span> 趋于无穷大时,这些常数都是 “浮云” 。</p>
<div class="center-table">
<table>
<thead>
<tr>
<th>操作数量 <span class="arithmatex">\(T(n)\)</span></th>
<th>时间复杂度 <span class="arithmatex">\(O(f(n))\)</span></th>
</tr>
</thead>
<tbody>
<tr>
<td><span class="arithmatex">\(100000\)</span></td>
<td><span class="arithmatex">\(O(1)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(3n + 2\)</span></td>
<td><span class="arithmatex">\(O(n)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(2n^2 + 3n + 2\)</span></td>
<td><span class="arithmatex">\(O(n^2)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(n^3 + 10000n^2\)</span></td>
<td><span class="arithmatex">\(O(n^3)\)</span></td>
</tr>
<tr>
<td><span class="arithmatex">\(2^n + 10000n^{10000}\)</span></td>
<td><span class="arithmatex">\(O(2^n)\)</span></td>
</tr>
</tbody>
</table>
</div>
<h2 id="_6">常见类型<a class="headerlink" href="#_6" title="Permanent link">&para;</a></h2>
<p>设输入数据大小为 <span class="arithmatex">\(n\)</span> ,常见的时间复杂度类型有(从低到高排列)</p>
<div class="arithmatex">\[
\begin{aligned}
O(1) &lt; O(\log n) &lt; O(n) &lt; O(n \log n) &lt; O(n^2) &lt; O(2^n) &lt; O(n!) \newline
\text{常数阶} &lt; \text{对数阶} &lt; \text{线性阶} &lt; \text{线性对数阶} &lt; \text{平方阶} &lt; \text{指数阶} &lt; \text{阶乘阶}
\end{aligned}
\]</div>
<p><img alt="time_complexity_common_types" src="../time_complexity.assets/time_complexity_common_types.png" /></p>
<p align="center"> Fig. 时间复杂度的常见类型 </p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>部分示例代码需要一些前置知识,包括数组、递归算法等。如果遇到看不懂的地方无需担心,可以在学习完后面章节后再来复习,现阶段先聚焦在理解时间复杂度含义和推算方法上。</p>
</div>
<h3 id="o1">常数阶 <span class="arithmatex">\(O(1)\)</span><a class="headerlink" href="#o1" title="Permanent link">&para;</a></h3>
<p>常数阶的操作数量与输入数据大小 <span class="arithmatex">\(n\)</span> 无关,即不随着 <span class="arithmatex">\(n\)</span> 的变化而变化。</p>
<p>对于以下算法,无论操作数量 <code>size</code> 有多大,只要与数据大小 <span class="arithmatex">\(n\)</span> 无关,时间复杂度就仍为 <span class="arithmatex">\(O(1)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:8"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Java</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Python</label><label for="__tabbed_5_4">Go</label><label for="__tabbed_5_5">JavaScript</label><label for="__tabbed_5_6">TypeScript</label><label for="__tabbed_5_7">C</label><label for="__tabbed_5_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-32-1" name="__codelineno-32-1" href="#__codelineno-32-1"></a><span class="cm">/* 常数阶 */</span><span class="w"></span>
<a id="__codelineno-32-2" name="__codelineno-32-2" href="#__codelineno-32-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-32-3" name="__codelineno-32-3" href="#__codelineno-32-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-32-4" name="__codelineno-32-4" href="#__codelineno-32-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-32-5" name="__codelineno-32-5" href="#__codelineno-32-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"></span>
<a id="__codelineno-32-6" name="__codelineno-32-6" href="#__codelineno-32-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-32-7" name="__codelineno-32-7" href="#__codelineno-32-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-32-8" name="__codelineno-32-8" href="#__codelineno-32-8"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-33-1" name="__codelineno-33-1" href="#__codelineno-33-1"></a><span class="cm">/* 常数阶 */</span><span class="w"></span>
<a id="__codelineno-33-2" name="__codelineno-33-2" href="#__codelineno-33-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">constant</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-33-3" name="__codelineno-33-3" href="#__codelineno-33-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-33-4" name="__codelineno-33-4" href="#__codelineno-33-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">size</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100000</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-33-5" name="__codelineno-33-5" href="#__codelineno-33-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">size</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"></span>
<a id="__codelineno-33-6" name="__codelineno-33-6" href="#__codelineno-33-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-33-7" name="__codelineno-33-7" href="#__codelineno-33-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-33-8" name="__codelineno-33-8" href="#__codelineno-33-8"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-34-1" name="__codelineno-34-1" href="#__codelineno-34-1"></a><span class="sd">&quot;&quot;&quot; 常数阶 &quot;&quot;&quot;</span>
<a id="__codelineno-34-2" name="__codelineno-34-2" href="#__codelineno-34-2"></a><span class="k">def</span> <span class="nf">constant</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-34-3" name="__codelineno-34-3" href="#__codelineno-34-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-34-4" name="__codelineno-34-4" href="#__codelineno-34-4"></a> <span class="n">size</span> <span class="o">=</span> <span class="mi">100000</span>
<a id="__codelineno-34-5" name="__codelineno-34-5" href="#__codelineno-34-5"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">size</span><span class="p">):</span>
<a id="__codelineno-34-6" name="__codelineno-34-6" href="#__codelineno-34-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-34-7" name="__codelineno-34-7" href="#__codelineno-34-7"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-35-1" name="__codelineno-35-1" href="#__codelineno-35-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-36-1" name="__codelineno-36-1" href="#__codelineno-36-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-37-1" name="__codelineno-37-1" href="#__codelineno-37-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-39-1" name="__codelineno-39-1" href="#__codelineno-39-1"></a>
</code></pre></div>
</div>
</div>
</div>
<h3 id="on">线性阶 <span class="arithmatex">\(O(n)\)</span><a class="headerlink" href="#on" title="Permanent link">&para;</a></h3>
<p>线性阶的操作数量相对输入数据大小成线性级别增长。线性阶常出现于单层循环。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="6:8"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Java</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Python</label><label for="__tabbed_6_4">Go</label><label for="__tabbed_6_5">JavaScript</label><label for="__tabbed_6_6">TypeScript</label><label for="__tabbed_6_7">C</label><label for="__tabbed_6_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 线性阶 */</span><span class="w"></span>
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"></span>
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="cm">/* 线性阶 */</span><span class="w"></span>
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linear</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"></span>
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-41-7" name="__codelineno-41-7" href="#__codelineno-41-7"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-42-1" name="__codelineno-42-1" href="#__codelineno-42-1"></a><span class="sd">&quot;&quot;&quot; 线性阶 &quot;&quot;&quot;</span>
<a id="__codelineno-42-2" name="__codelineno-42-2" href="#__codelineno-42-2"></a><span class="k">def</span> <span class="nf">linear</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-42-3" name="__codelineno-42-3" href="#__codelineno-42-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-42-4" name="__codelineno-42-4" href="#__codelineno-42-4"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-42-5" name="__codelineno-42-5" href="#__codelineno-42-5"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-42-6" name="__codelineno-42-6" href="#__codelineno-42-6"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-43-1" name="__codelineno-43-1" href="#__codelineno-43-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-44-1" name="__codelineno-44-1" href="#__codelineno-44-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-45-1" name="__codelineno-45-1" href="#__codelineno-45-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-46-1" name="__codelineno-46-1" href="#__codelineno-46-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-47-1" name="__codelineno-47-1" href="#__codelineno-47-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p>「遍历数组」和「遍历链表」等操作,时间复杂度都为 <span class="arithmatex">\(O(n)\)</span> ,其中 <span class="arithmatex">\(n\)</span> 为数组或链表的长度。</p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p><strong>数据大小 <span class="arithmatex">\(n\)</span> 是根据输入数据的类型来确定的。</strong> 比如,在上述示例中,我们直接将 <span class="arithmatex">\(n\)</span> 看作输入数据大小;以下遍历数组示例中,数据大小 <span class="arithmatex">\(n\)</span> 为数组的长度。</p>
</div>
<div class="tabbed-set tabbed-alternate" data-tabs="7:8"><input checked="checked" id="__tabbed_7_1" name="__tabbed_7" type="radio" /><input id="__tabbed_7_2" name="__tabbed_7" type="radio" /><input id="__tabbed_7_3" name="__tabbed_7" type="radio" /><input id="__tabbed_7_4" name="__tabbed_7" type="radio" /><input id="__tabbed_7_5" name="__tabbed_7" type="radio" /><input id="__tabbed_7_6" name="__tabbed_7" type="radio" /><input id="__tabbed_7_7" name="__tabbed_7" type="radio" /><input id="__tabbed_7_8" name="__tabbed_7" type="radio" /><div class="tabbed-labels"><label for="__tabbed_7_1">Java</label><label for="__tabbed_7_2">C++</label><label for="__tabbed_7_3">Python</label><label for="__tabbed_7_4">Go</label><label for="__tabbed_7_5">JavaScript</label><label for="__tabbed_7_6">TypeScript</label><label for="__tabbed_7_7">C</label><label for="__tabbed_7_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-48-1" name="__codelineno-48-1" href="#__codelineno-48-1"></a><span class="cm">/* 线性阶(遍历数组) */</span><span class="w"></span>
<a id="__codelineno-48-2" name="__codelineno-48-2" href="#__codelineno-48-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-48-3" name="__codelineno-48-3" href="#__codelineno-48-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-48-4" name="__codelineno-48-4" href="#__codelineno-48-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span><span class="w"></span>
<a id="__codelineno-48-5" name="__codelineno-48-5" href="#__codelineno-48-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="p">:</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-48-6" name="__codelineno-48-6" href="#__codelineno-48-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-48-7" name="__codelineno-48-7" href="#__codelineno-48-7"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-48-8" name="__codelineno-48-8" href="#__codelineno-48-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-48-9" name="__codelineno-48-9" href="#__codelineno-48-9"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-49-1" name="__codelineno-49-1" href="#__codelineno-49-1"></a><span class="cm">/* 线性阶(遍历数组) */</span><span class="w"></span>
<a id="__codelineno-49-2" name="__codelineno-49-2" href="#__codelineno-49-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">arrayTraversal</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&amp;</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-49-3" name="__codelineno-49-3" href="#__codelineno-49-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-49-4" name="__codelineno-49-4" href="#__codelineno-49-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成正比</span>
<a id="__codelineno-49-5" name="__codelineno-49-5" href="#__codelineno-49-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">num</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-49-6" name="__codelineno-49-6" href="#__codelineno-49-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-49-7" name="__codelineno-49-7" href="#__codelineno-49-7"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-49-8" name="__codelineno-49-8" href="#__codelineno-49-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-49-9" name="__codelineno-49-9" href="#__codelineno-49-9"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-50-1" name="__codelineno-50-1" href="#__codelineno-50-1"></a><span class="sd">&quot;&quot;&quot; 线性阶(遍历数组)&quot;&quot;&quot;</span>
<a id="__codelineno-50-2" name="__codelineno-50-2" href="#__codelineno-50-2"></a><span class="k">def</span> <span class="nf">array_traversal</span><span class="p">(</span><span class="n">nums</span><span class="p">):</span>
<a id="__codelineno-50-3" name="__codelineno-50-3" href="#__codelineno-50-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-50-4" name="__codelineno-50-4" href="#__codelineno-50-4"></a> <span class="c1"># 循环次数与数组长度成正比</span>
<a id="__codelineno-50-5" name="__codelineno-50-5" href="#__codelineno-50-5"></a> <span class="k">for</span> <span class="n">num</span> <span class="ow">in</span> <span class="n">nums</span><span class="p">:</span>
<a id="__codelineno-50-6" name="__codelineno-50-6" href="#__codelineno-50-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-50-7" name="__codelineno-50-7" href="#__codelineno-50-7"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-51-1" name="__codelineno-51-1" href="#__codelineno-51-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-52-1" name="__codelineno-52-1" href="#__codelineno-52-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-53-1" name="__codelineno-53-1" href="#__codelineno-53-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-54-1" name="__codelineno-54-1" href="#__codelineno-54-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-55-1" name="__codelineno-55-1" href="#__codelineno-55-1"></a>
</code></pre></div>
</div>
</div>
</div>
<h3 id="on2">平方阶 <span class="arithmatex">\(O(n^2)\)</span><a class="headerlink" href="#on2" title="Permanent link">&para;</a></h3>
<p>平方阶的操作数量相对输入数据大小成平方级别增长。平方阶常出现于嵌套循环,外层循环和内层循环都为 <span class="arithmatex">\(O(n)\)</span> ,总体为 <span class="arithmatex">\(O(n^2)\)</span></p>
<div class="tabbed-set tabbed-alternate" data-tabs="8:8"><input checked="checked" id="__tabbed_8_1" name="__tabbed_8" type="radio" /><input id="__tabbed_8_2" name="__tabbed_8" type="radio" /><input id="__tabbed_8_3" name="__tabbed_8" type="radio" /><input id="__tabbed_8_4" name="__tabbed_8" type="radio" /><input id="__tabbed_8_5" name="__tabbed_8" type="radio" /><input id="__tabbed_8_6" name="__tabbed_8" type="radio" /><input id="__tabbed_8_7" name="__tabbed_8" type="radio" /><input id="__tabbed_8_8" name="__tabbed_8" type="radio" /><div class="tabbed-labels"><label for="__tabbed_8_1">Java</label><label for="__tabbed_8_2">C++</label><label for="__tabbed_8_3">Python</label><label for="__tabbed_8_4">Go</label><label for="__tabbed_8_5">JavaScript</label><label for="__tabbed_8_6">TypeScript</label><label for="__tabbed_8_7">C</label><label for="__tabbed_8_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-56-1" name="__codelineno-56-1" href="#__codelineno-56-1"></a><span class="cm">/* 平方阶 */</span><span class="w"></span>
<a id="__codelineno-56-2" name="__codelineno-56-2" href="#__codelineno-56-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-56-3" name="__codelineno-56-3" href="#__codelineno-56-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-56-4" name="__codelineno-56-4" href="#__codelineno-56-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span><span class="w"></span>
<a id="__codelineno-56-5" name="__codelineno-56-5" href="#__codelineno-56-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-56-6" name="__codelineno-56-6" href="#__codelineno-56-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-56-7" name="__codelineno-56-7" href="#__codelineno-56-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-56-8" name="__codelineno-56-8" href="#__codelineno-56-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-56-9" name="__codelineno-56-9" href="#__codelineno-56-9"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-56-10" name="__codelineno-56-10" href="#__codelineno-56-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-56-11" name="__codelineno-56-11" href="#__codelineno-56-11"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-57-1" name="__codelineno-57-1" href="#__codelineno-57-1"></a><span class="cm">/* 平方阶 */</span><span class="w"></span>
<a id="__codelineno-57-2" name="__codelineno-57-2" href="#__codelineno-57-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-57-3" name="__codelineno-57-3" href="#__codelineno-57-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-57-4" name="__codelineno-57-4" href="#__codelineno-57-4"></a><span class="w"> </span><span class="c1">// 循环次数与数组长度成平方关系</span>
<a id="__codelineno-57-5" name="__codelineno-57-5" href="#__codelineno-57-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-57-6" name="__codelineno-57-6" href="#__codelineno-57-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-57-7" name="__codelineno-57-7" href="#__codelineno-57-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-57-8" name="__codelineno-57-8" href="#__codelineno-57-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-57-9" name="__codelineno-57-9" href="#__codelineno-57-9"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-57-10" name="__codelineno-57-10" href="#__codelineno-57-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-57-11" name="__codelineno-57-11" href="#__codelineno-57-11"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-58-1" name="__codelineno-58-1" href="#__codelineno-58-1"></a><span class="sd">&quot;&quot;&quot; 平方阶 &quot;&quot;&quot;</span>
<a id="__codelineno-58-2" name="__codelineno-58-2" href="#__codelineno-58-2"></a><span class="k">def</span> <span class="nf">quadratic</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-58-3" name="__codelineno-58-3" href="#__codelineno-58-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-58-4" name="__codelineno-58-4" href="#__codelineno-58-4"></a> <span class="c1"># 循环次数与数组长度成平方关系</span>
<a id="__codelineno-58-5" name="__codelineno-58-5" href="#__codelineno-58-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-58-6" name="__codelineno-58-6" href="#__codelineno-58-6"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-58-7" name="__codelineno-58-7" href="#__codelineno-58-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-58-8" name="__codelineno-58-8" href="#__codelineno-58-8"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-59-1" name="__codelineno-59-1" href="#__codelineno-59-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-60-1" name="__codelineno-60-1" href="#__codelineno-60-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-61-1" name="__codelineno-61-1" href="#__codelineno-61-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-62-1" name="__codelineno-62-1" href="#__codelineno-62-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-63-1" name="__codelineno-63-1" href="#__codelineno-63-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="time_complexity_constant_linear_quadratic" src="../time_complexity.assets/time_complexity_constant_linear_quadratic.png" /></p>
<p align="center"> Fig. 常数阶、线性阶、平方阶的时间复杂度 </p>
<p>以「冒泡排序」为例,外层循环 <span class="arithmatex">\(n - 1\)</span> 次,内层循环 <span class="arithmatex">\(n-1, n-2, \cdots, 2, 1\)</span> 次,平均为 <span class="arithmatex">\(\frac{n}{2}\)</span> 次,因此时间复杂度为 <span class="arithmatex">\(O(n^2)\)</span></p>
<div class="arithmatex">\[
O((n - 1) \frac{n}{2}) = O(n^2)
\]</div>
<div class="tabbed-set tabbed-alternate" data-tabs="9:8"><input checked="checked" id="__tabbed_9_1" name="__tabbed_9" type="radio" /><input id="__tabbed_9_2" name="__tabbed_9" type="radio" /><input id="__tabbed_9_3" name="__tabbed_9" type="radio" /><input id="__tabbed_9_4" name="__tabbed_9" type="radio" /><input id="__tabbed_9_5" name="__tabbed_9" type="radio" /><input id="__tabbed_9_6" name="__tabbed_9" type="radio" /><input id="__tabbed_9_7" name="__tabbed_9" type="radio" /><input id="__tabbed_9_8" name="__tabbed_9" type="radio" /><div class="tabbed-labels"><label for="__tabbed_9_1">Java</label><label for="__tabbed_9_2">C++</label><label for="__tabbed_9_3">Python</label><label for="__tabbed_9_4">Go</label><label for="__tabbed_9_5">JavaScript</label><label for="__tabbed_9_6">TypeScript</label><label for="__tabbed_9_7">C</label><label for="__tabbed_9_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-64-1" name="__codelineno-64-1" href="#__codelineno-64-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span><span class="w"></span>
<a id="__codelineno-64-2" name="__codelineno-64-2" href="#__codelineno-64-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-64-3" name="__codelineno-64-3" href="#__codelineno-64-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span><span class="w"></span>
<a id="__codelineno-64-4" name="__codelineno-64-4" href="#__codelineno-64-4"></a><span class="w"> </span><span class="c1">// 外循环:待排序元素数量为 n-1, n-2, ..., 1</span><span class="w"></span>
<a id="__codelineno-64-5" name="__codelineno-64-5" href="#__codelineno-64-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-64-6" name="__codelineno-64-6" href="#__codelineno-64-6"></a><span class="w"> </span><span class="c1">// 内循环:冒泡操作</span><span class="w"></span>
<a id="__codelineno-64-7" name="__codelineno-64-7" href="#__codelineno-64-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-64-8" name="__codelineno-64-8" href="#__codelineno-64-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-64-9" name="__codelineno-64-9" href="#__codelineno-64-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span><span class="w"></span>
<a id="__codelineno-64-10" name="__codelineno-64-10" href="#__codelineno-64-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-64-11" name="__codelineno-64-11" href="#__codelineno-64-11"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-64-12" name="__codelineno-64-12" href="#__codelineno-64-12"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-64-13" name="__codelineno-64-13" href="#__codelineno-64-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span><span class="w"></span>
<a id="__codelineno-64-14" name="__codelineno-64-14" href="#__codelineno-64-14"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-64-15" name="__codelineno-64-15" href="#__codelineno-64-15"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-64-16" name="__codelineno-64-16" href="#__codelineno-64-16"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-64-17" name="__codelineno-64-17" href="#__codelineno-64-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-64-18" name="__codelineno-64-18" href="#__codelineno-64-18"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-65-1" name="__codelineno-65-1" href="#__codelineno-65-1"></a><span class="cm">/* 平方阶(冒泡排序) */</span><span class="w"></span>
<a id="__codelineno-65-2" name="__codelineno-65-2" href="#__codelineno-65-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">bubbleSort</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&amp;</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-65-3" name="__codelineno-65-3" href="#__codelineno-65-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="c1">// 计数器</span>
<a id="__codelineno-65-4" name="__codelineno-65-4" href="#__codelineno-65-4"></a><span class="w"> </span><span class="c1">// 外循环:待排序元素数量为 n-1, n-2, ..., 1</span>
<a id="__codelineno-65-5" name="__codelineno-65-5" href="#__codelineno-65-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">size</span><span class="p">()</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-65-6" name="__codelineno-65-6" href="#__codelineno-65-6"></a><span class="w"> </span><span class="c1">// 内循环:冒泡操作</span>
<a id="__codelineno-65-7" name="__codelineno-65-7" href="#__codelineno-65-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-65-8" name="__codelineno-65-8" href="#__codelineno-65-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">])</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-65-9" name="__codelineno-65-9" href="#__codelineno-65-9"></a><span class="w"> </span><span class="c1">// 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-65-10" name="__codelineno-65-10" href="#__codelineno-65-10"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">];</span><span class="w"></span>
<a id="__codelineno-65-11" name="__codelineno-65-11" href="#__codelineno-65-11"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">];</span><span class="w"></span>
<a id="__codelineno-65-12" name="__codelineno-65-12" href="#__codelineno-65-12"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">tmp</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-65-13" name="__codelineno-65-13" href="#__codelineno-65-13"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="mi">3</span><span class="p">;</span><span class="w"> </span><span class="c1">// 元素交换包含 3 个单元操作</span>
<a id="__codelineno-65-14" name="__codelineno-65-14" href="#__codelineno-65-14"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-65-15" name="__codelineno-65-15" href="#__codelineno-65-15"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-65-16" name="__codelineno-65-16" href="#__codelineno-65-16"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-65-17" name="__codelineno-65-17" href="#__codelineno-65-17"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-65-18" name="__codelineno-65-18" href="#__codelineno-65-18"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-66-1" name="__codelineno-66-1" href="#__codelineno-66-1"></a><span class="sd">&quot;&quot;&quot; 平方阶(冒泡排序)&quot;&quot;&quot;</span>
<a id="__codelineno-66-2" name="__codelineno-66-2" href="#__codelineno-66-2"></a><span class="k">def</span> <span class="nf">bubble_sort</span><span class="p">(</span><span class="n">nums</span><span class="p">):</span>
<a id="__codelineno-66-3" name="__codelineno-66-3" href="#__codelineno-66-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span> <span class="c1"># 计数器</span>
<a id="__codelineno-66-4" name="__codelineno-66-4" href="#__codelineno-66-4"></a> <span class="c1"># 外循环:待排序元素数量为 n-1, n-2, ..., 1</span>
<a id="__codelineno-66-5" name="__codelineno-66-5" href="#__codelineno-66-5"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nums</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">):</span>
<a id="__codelineno-66-6" name="__codelineno-66-6" href="#__codelineno-66-6"></a> <span class="c1"># 内循环:冒泡操作</span>
<a id="__codelineno-66-7" name="__codelineno-66-7" href="#__codelineno-66-7"></a> <span class="k">for</span> <span class="n">j</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">i</span><span class="p">):</span>
<a id="__codelineno-66-8" name="__codelineno-66-8" href="#__codelineno-66-8"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">&gt;</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]:</span>
<a id="__codelineno-66-9" name="__codelineno-66-9" href="#__codelineno-66-9"></a> <span class="c1"># 交换 nums[j] 与 nums[j + 1]</span>
<a id="__codelineno-66-10" name="__codelineno-66-10" href="#__codelineno-66-10"></a> <span class="n">tmp</span> <span class="o">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span>
<a id="__codelineno-66-11" name="__codelineno-66-11" href="#__codelineno-66-11"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span><span class="p">]</span> <span class="o">=</span> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span>
<a id="__codelineno-66-12" name="__codelineno-66-12" href="#__codelineno-66-12"></a> <span class="n">nums</span><span class="p">[</span><span class="n">j</span> <span class="o">+</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">tmp</span>
<a id="__codelineno-66-13" name="__codelineno-66-13" href="#__codelineno-66-13"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">3</span> <span class="c1"># 元素交换包含 3 个单元操作</span>
<a id="__codelineno-66-14" name="__codelineno-66-14" href="#__codelineno-66-14"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-67-1" name="__codelineno-67-1" href="#__codelineno-67-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-68-1" name="__codelineno-68-1" href="#__codelineno-68-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-69-1" name="__codelineno-69-1" href="#__codelineno-69-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-70-1" name="__codelineno-70-1" href="#__codelineno-70-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-71-1" name="__codelineno-71-1" href="#__codelineno-71-1"></a>
</code></pre></div>
</div>
</div>
</div>
<h3 id="o2n">指数阶 <span class="arithmatex">\(O(2^n)\)</span><a class="headerlink" href="#o2n" title="Permanent link">&para;</a></h3>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>生物学科中的 “细胞分裂” 即是指数阶增长:初始状态为 <span class="arithmatex">\(1\)</span> 个细胞,分裂一轮后为 <span class="arithmatex">\(2\)</span> 个,分裂两轮后为 <span class="arithmatex">\(4\)</span> 个,……,分裂 <span class="arithmatex">\(n\)</span> 轮后有 <span class="arithmatex">\(2^n\)</span> 个细胞。</p>
</div>
<p>指数阶增长得非常快,在实际应用中一般是不能被接受的。若一个问题使用「暴力枚举」求解的时间复杂度是 <span class="arithmatex">\(O(2^n)\)</span> ,那么一般都需要使用「动态规划」或「贪心算法」等算法来求解。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="10:8"><input checked="checked" id="__tabbed_10_1" name="__tabbed_10" type="radio" /><input id="__tabbed_10_2" name="__tabbed_10" type="radio" /><input id="__tabbed_10_3" name="__tabbed_10" type="radio" /><input id="__tabbed_10_4" name="__tabbed_10" type="radio" /><input id="__tabbed_10_5" name="__tabbed_10" type="radio" /><input id="__tabbed_10_6" name="__tabbed_10" type="radio" /><input id="__tabbed_10_7" name="__tabbed_10" type="radio" /><input id="__tabbed_10_8" name="__tabbed_10" type="radio" /><div class="tabbed-labels"><label for="__tabbed_10_1">Java</label><label for="__tabbed_10_2">C++</label><label for="__tabbed_10_3">Python</label><label for="__tabbed_10_4">Go</label><label for="__tabbed_10_5">JavaScript</label><label for="__tabbed_10_6">TypeScript</label><label for="__tabbed_10_7">C</label><label for="__tabbed_10_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-72-1" name="__codelineno-72-1" href="#__codelineno-72-1"></a><span class="cm">/* 指数阶(循环实现) */</span><span class="w"></span>
<a id="__codelineno-72-2" name="__codelineno-72-2" href="#__codelineno-72-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-72-3" name="__codelineno-72-3" href="#__codelineno-72-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-72-4" name="__codelineno-72-4" href="#__codelineno-72-4"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span><span class="w"></span>
<a id="__codelineno-72-5" name="__codelineno-72-5" href="#__codelineno-72-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-72-6" name="__codelineno-72-6" href="#__codelineno-72-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-72-7" name="__codelineno-72-7" href="#__codelineno-72-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-72-8" name="__codelineno-72-8" href="#__codelineno-72-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-72-9" name="__codelineno-72-9" href="#__codelineno-72-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-72-10" name="__codelineno-72-10" href="#__codelineno-72-10"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-72-11" name="__codelineno-72-11" href="#__codelineno-72-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span><span class="w"></span>
<a id="__codelineno-72-12" name="__codelineno-72-12" href="#__codelineno-72-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-72-13" name="__codelineno-72-13" href="#__codelineno-72-13"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-73-1" name="__codelineno-73-1" href="#__codelineno-73-1"></a><span class="cm">/* 指数阶(循环实现) */</span><span class="w"></span>
<a id="__codelineno-73-2" name="__codelineno-73-2" href="#__codelineno-73-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">exponential</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-73-3" name="__codelineno-73-3" href="#__codelineno-73-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-73-4" name="__codelineno-73-4" href="#__codelineno-73-4"></a><span class="w"> </span><span class="c1">// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-73-5" name="__codelineno-73-5" href="#__codelineno-73-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-73-6" name="__codelineno-73-6" href="#__codelineno-73-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">base</span><span class="p">;</span><span class="w"> </span><span class="n">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-73-7" name="__codelineno-73-7" href="#__codelineno-73-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-73-8" name="__codelineno-73-8" href="#__codelineno-73-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-73-9" name="__codelineno-73-9" href="#__codelineno-73-9"></a><span class="w"> </span><span class="n">base</span><span class="w"> </span><span class="o">*=</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-73-10" name="__codelineno-73-10" href="#__codelineno-73-10"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-73-11" name="__codelineno-73-11" href="#__codelineno-73-11"></a><span class="w"> </span><span class="c1">// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-73-12" name="__codelineno-73-12" href="#__codelineno-73-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-73-13" name="__codelineno-73-13" href="#__codelineno-73-13"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-74-1" name="__codelineno-74-1" href="#__codelineno-74-1"></a><span class="sd">&quot;&quot;&quot; 指数阶(循环实现)&quot;&quot;&quot;</span>
<a id="__codelineno-74-2" name="__codelineno-74-2" href="#__codelineno-74-2"></a><span class="k">def</span> <span class="nf">exponential</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-74-3" name="__codelineno-74-3" href="#__codelineno-74-3"></a> <span class="n">count</span><span class="p">,</span> <span class="n">base</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span>
<a id="__codelineno-74-4" name="__codelineno-74-4" href="#__codelineno-74-4"></a> <span class="c1"># cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)</span>
<a id="__codelineno-74-5" name="__codelineno-74-5" href="#__codelineno-74-5"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-74-6" name="__codelineno-74-6" href="#__codelineno-74-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">base</span><span class="p">):</span>
<a id="__codelineno-74-7" name="__codelineno-74-7" href="#__codelineno-74-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-74-8" name="__codelineno-74-8" href="#__codelineno-74-8"></a> <span class="n">base</span> <span class="o">*=</span> <span class="mi">2</span>
<a id="__codelineno-74-9" name="__codelineno-74-9" href="#__codelineno-74-9"></a> <span class="c1"># count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1</span>
<a id="__codelineno-74-10" name="__codelineno-74-10" href="#__codelineno-74-10"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-75-1" name="__codelineno-75-1" href="#__codelineno-75-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-76-1" name="__codelineno-76-1" href="#__codelineno-76-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-77-1" name="__codelineno-77-1" href="#__codelineno-77-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-78-1" name="__codelineno-78-1" href="#__codelineno-78-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-79-1" name="__codelineno-79-1" href="#__codelineno-79-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="time_complexity_exponential" src="../time_complexity.assets/time_complexity_exponential.png" /></p>
<p align="center"> Fig. 指数阶的时间复杂度 </p>
<p>在实际算法中,指数阶常出现于递归函数。例如以下代码,不断地一分为二,分裂 <span class="arithmatex">\(n\)</span> 次后停止。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="11:8"><input checked="checked" id="__tabbed_11_1" name="__tabbed_11" type="radio" /><input id="__tabbed_11_2" name="__tabbed_11" type="radio" /><input id="__tabbed_11_3" name="__tabbed_11" type="radio" /><input id="__tabbed_11_4" name="__tabbed_11" type="radio" /><input id="__tabbed_11_5" name="__tabbed_11" type="radio" /><input id="__tabbed_11_6" name="__tabbed_11" type="radio" /><input id="__tabbed_11_7" name="__tabbed_11" type="radio" /><input id="__tabbed_11_8" name="__tabbed_11" type="radio" /><div class="tabbed-labels"><label for="__tabbed_11_1">Java</label><label for="__tabbed_11_2">C++</label><label for="__tabbed_11_3">Python</label><label for="__tabbed_11_4">Go</label><label for="__tabbed_11_5">JavaScript</label><label for="__tabbed_11_6">TypeScript</label><label for="__tabbed_11_7">C</label><label for="__tabbed_11_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-80-1" name="__codelineno-80-1" href="#__codelineno-80-1"></a><span class="cm">/* 指数阶(递归实现) */</span><span class="w"></span>
<a id="__codelineno-80-2" name="__codelineno-80-2" href="#__codelineno-80-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-80-3" name="__codelineno-80-3" href="#__codelineno-80-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-80-4" name="__codelineno-80-4" href="#__codelineno-80-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-80-5" name="__codelineno-80-5" href="#__codelineno-80-5"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-81-1" name="__codelineno-81-1" href="#__codelineno-81-1"></a><span class="cm">/* 指数阶(递归实现) */</span><span class="w"></span>
<a id="__codelineno-81-2" name="__codelineno-81-2" href="#__codelineno-81-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">expRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-81-3" name="__codelineno-81-3" href="#__codelineno-81-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-81-4" name="__codelineno-81-4" href="#__codelineno-81-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">expRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-81-5" name="__codelineno-81-5" href="#__codelineno-81-5"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-82-1" name="__codelineno-82-1" href="#__codelineno-82-1"></a><span class="sd">&quot;&quot;&quot; 指数阶(递归实现)&quot;&quot;&quot;</span>
<a id="__codelineno-82-2" name="__codelineno-82-2" href="#__codelineno-82-2"></a><span class="k">def</span> <span class="nf">exp_recur</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-82-3" name="__codelineno-82-3" href="#__codelineno-82-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-82-4" name="__codelineno-82-4" href="#__codelineno-82-4"></a> <span class="k">return</span> <span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="n">exp_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-83-1" name="__codelineno-83-1" href="#__codelineno-83-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-84-1" name="__codelineno-84-1" href="#__codelineno-84-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-85-1" name="__codelineno-85-1" href="#__codelineno-85-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-86-1" name="__codelineno-86-1" href="#__codelineno-86-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-87-1" name="__codelineno-87-1" href="#__codelineno-87-1"></a>
</code></pre></div>
</div>
</div>
</div>
<h3 id="olog-n">对数阶 <span class="arithmatex">\(O(\log n)\)</span><a class="headerlink" href="#olog-n" title="Permanent link">&para;</a></h3>
<p>对数阶与指数阶正好相反,后者反映 “每轮增加到两倍的情况” ,而前者反映 “每轮缩减到一半的情况” 。对数阶仅次于常数阶,时间增长的很慢,是理想的时间复杂度。</p>
<p>对数阶常出现于「二分查找」和「分治算法」中,体现 “一分为多” 、“化繁为简” 的算法思想。</p>
<p>设输入数据大小为 <span class="arithmatex">\(n\)</span> ,由于每轮缩减到一半,因此循环次数是 <span class="arithmatex">\(\log_2 n\)</span> ,即 <span class="arithmatex">\(2^n\)</span> 的反函数。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="12:8"><input checked="checked" id="__tabbed_12_1" name="__tabbed_12" type="radio" /><input id="__tabbed_12_2" name="__tabbed_12" type="radio" /><input id="__tabbed_12_3" name="__tabbed_12" type="radio" /><input id="__tabbed_12_4" name="__tabbed_12" type="radio" /><input id="__tabbed_12_5" name="__tabbed_12" type="radio" /><input id="__tabbed_12_6" name="__tabbed_12" type="radio" /><input id="__tabbed_12_7" name="__tabbed_12" type="radio" /><input id="__tabbed_12_8" name="__tabbed_12" type="radio" /><div class="tabbed-labels"><label for="__tabbed_12_1">Java</label><label for="__tabbed_12_2">C++</label><label for="__tabbed_12_3">Python</label><label for="__tabbed_12_4">Go</label><label for="__tabbed_12_5">JavaScript</label><label for="__tabbed_12_6">TypeScript</label><label for="__tabbed_12_7">C</label><label for="__tabbed_12_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-88-1" name="__codelineno-88-1" href="#__codelineno-88-1"></a><span class="cm">/* 对数阶(循环实现) */</span><span class="w"></span>
<a id="__codelineno-88-2" name="__codelineno-88-2" href="#__codelineno-88-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-88-3" name="__codelineno-88-3" href="#__codelineno-88-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-88-4" name="__codelineno-88-4" href="#__codelineno-88-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-88-5" name="__codelineno-88-5" href="#__codelineno-88-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-88-6" name="__codelineno-88-6" href="#__codelineno-88-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-88-7" name="__codelineno-88-7" href="#__codelineno-88-7"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-88-8" name="__codelineno-88-8" href="#__codelineno-88-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-88-9" name="__codelineno-88-9" href="#__codelineno-88-9"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-89-1" name="__codelineno-89-1" href="#__codelineno-89-1"></a><span class="cm">/* 对数阶(循环实现) */</span><span class="w"></span>
<a id="__codelineno-89-2" name="__codelineno-89-2" href="#__codelineno-89-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logarithmic</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-89-3" name="__codelineno-89-3" href="#__codelineno-89-3"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-89-4" name="__codelineno-89-4" href="#__codelineno-89-4"></a><span class="w"> </span><span class="k">while</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&gt;</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-89-5" name="__codelineno-89-5" href="#__codelineno-89-5"></a><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-89-6" name="__codelineno-89-6" href="#__codelineno-89-6"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-89-7" name="__codelineno-89-7" href="#__codelineno-89-7"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-89-8" name="__codelineno-89-8" href="#__codelineno-89-8"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-89-9" name="__codelineno-89-9" href="#__codelineno-89-9"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-90-1" name="__codelineno-90-1" href="#__codelineno-90-1"></a><span class="sd">&quot;&quot;&quot; 对数阶(循环实现)&quot;&quot;&quot;</span>
<a id="__codelineno-90-2" name="__codelineno-90-2" href="#__codelineno-90-2"></a><span class="k">def</span> <span class="nf">logarithmic</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-90-3" name="__codelineno-90-3" href="#__codelineno-90-3"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-90-4" name="__codelineno-90-4" href="#__codelineno-90-4"></a> <span class="k">while</span> <span class="n">n</span> <span class="o">&gt;</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-90-5" name="__codelineno-90-5" href="#__codelineno-90-5"></a> <span class="n">n</span> <span class="o">=</span> <span class="n">n</span> <span class="o">/</span> <span class="mi">2</span>
<a id="__codelineno-90-6" name="__codelineno-90-6" href="#__codelineno-90-6"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-90-7" name="__codelineno-90-7" href="#__codelineno-90-7"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-91-1" name="__codelineno-91-1" href="#__codelineno-91-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-92-1" name="__codelineno-92-1" href="#__codelineno-92-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-93-1" name="__codelineno-93-1" href="#__codelineno-93-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-94-1" name="__codelineno-94-1" href="#__codelineno-94-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-95-1" name="__codelineno-95-1" href="#__codelineno-95-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="time_complexity_logarithmic" src="../time_complexity.assets/time_complexity_logarithmic.png" /></p>
<p align="center"> Fig. 对数阶的时间复杂度 </p>
<p>与指数阶类似,对数阶也常出现于递归函数。以下代码形成了一个高度为 <span class="arithmatex">\(\log_2 n\)</span> 的递归树。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="13:8"><input checked="checked" id="__tabbed_13_1" name="__tabbed_13" type="radio" /><input id="__tabbed_13_2" name="__tabbed_13" type="radio" /><input id="__tabbed_13_3" name="__tabbed_13" type="radio" /><input id="__tabbed_13_4" name="__tabbed_13" type="radio" /><input id="__tabbed_13_5" name="__tabbed_13" type="radio" /><input id="__tabbed_13_6" name="__tabbed_13" type="radio" /><input id="__tabbed_13_7" name="__tabbed_13" type="radio" /><input id="__tabbed_13_8" name="__tabbed_13" type="radio" /><div class="tabbed-labels"><label for="__tabbed_13_1">Java</label><label for="__tabbed_13_2">C++</label><label for="__tabbed_13_3">Python</label><label for="__tabbed_13_4">Go</label><label for="__tabbed_13_5">JavaScript</label><label for="__tabbed_13_6">TypeScript</label><label for="__tabbed_13_7">C</label><label for="__tabbed_13_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-96-1" name="__codelineno-96-1" href="#__codelineno-96-1"></a><span class="cm">/* 对数阶(递归实现) */</span><span class="w"></span>
<a id="__codelineno-96-2" name="__codelineno-96-2" href="#__codelineno-96-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-96-3" name="__codelineno-96-3" href="#__codelineno-96-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-96-4" name="__codelineno-96-4" href="#__codelineno-96-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-96-5" name="__codelineno-96-5" href="#__codelineno-96-5"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-97-1" name="__codelineno-97-1" href="#__codelineno-97-1"></a><span class="cm">/* 对数阶(递归实现) */</span><span class="w"></span>
<a id="__codelineno-97-2" name="__codelineno-97-2" href="#__codelineno-97-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">logRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-97-3" name="__codelineno-97-3" href="#__codelineno-97-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-97-4" name="__codelineno-97-4" href="#__codelineno-97-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">logRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-97-5" name="__codelineno-97-5" href="#__codelineno-97-5"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-98-1" name="__codelineno-98-1" href="#__codelineno-98-1"></a><span class="sd">&quot;&quot;&quot; 对数阶(递归实现)&quot;&quot;&quot;</span>
<a id="__codelineno-98-2" name="__codelineno-98-2" href="#__codelineno-98-2"></a><span class="k">def</span> <span class="nf">log_recur</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-98-3" name="__codelineno-98-3" href="#__codelineno-98-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span> <span class="k">return</span> <span class="mi">0</span>
<a id="__codelineno-98-4" name="__codelineno-98-4" href="#__codelineno-98-4"></a> <span class="k">return</span> <span class="n">log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">/</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-99-1" name="__codelineno-99-1" href="#__codelineno-99-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-100-1" name="__codelineno-100-1" href="#__codelineno-100-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-101-1" name="__codelineno-101-1" href="#__codelineno-101-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-102-1" name="__codelineno-102-1" href="#__codelineno-102-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-103-1" name="__codelineno-103-1" href="#__codelineno-103-1"></a>
</code></pre></div>
</div>
</div>
</div>
<h3 id="on-log-n">线性对数阶 <span class="arithmatex">\(O(n \log n)\)</span><a class="headerlink" href="#on-log-n" title="Permanent link">&para;</a></h3>
<p>线性对数阶常出现于嵌套循环中,两层循环的时间复杂度分别为 <span class="arithmatex">\(O(\log n)\)</span><span class="arithmatex">\(O(n)\)</span></p>
<p>主流排序算法的时间复杂度都是 <span class="arithmatex">\(O(n \log n )\)</span> ,例如快速排序、归并排序、堆排序等。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="14:8"><input checked="checked" id="__tabbed_14_1" name="__tabbed_14" type="radio" /><input id="__tabbed_14_2" name="__tabbed_14" type="radio" /><input id="__tabbed_14_3" name="__tabbed_14" type="radio" /><input id="__tabbed_14_4" name="__tabbed_14" type="radio" /><input id="__tabbed_14_5" name="__tabbed_14" type="radio" /><input id="__tabbed_14_6" name="__tabbed_14" type="radio" /><input id="__tabbed_14_7" name="__tabbed_14" type="radio" /><input id="__tabbed_14_8" name="__tabbed_14" type="radio" /><div class="tabbed-labels"><label for="__tabbed_14_1">Java</label><label for="__tabbed_14_2">C++</label><label for="__tabbed_14_3">Python</label><label for="__tabbed_14_4">Go</label><label for="__tabbed_14_5">JavaScript</label><label for="__tabbed_14_6">TypeScript</label><label for="__tabbed_14_7">C</label><label for="__tabbed_14_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-104-1" name="__codelineno-104-1" href="#__codelineno-104-1"></a><span class="cm">/* 线性对数阶 */</span><span class="w"></span>
<a id="__codelineno-104-2" name="__codelineno-104-2" href="#__codelineno-104-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-104-3" name="__codelineno-104-3" href="#__codelineno-104-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-104-4" name="__codelineno-104-4" href="#__codelineno-104-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span>
<a id="__codelineno-104-5" name="__codelineno-104-5" href="#__codelineno-104-5"></a><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-104-6" name="__codelineno-104-6" href="#__codelineno-104-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-104-7" name="__codelineno-104-7" href="#__codelineno-104-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-104-8" name="__codelineno-104-8" href="#__codelineno-104-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-104-9" name="__codelineno-104-9" href="#__codelineno-104-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-104-10" name="__codelineno-104-10" href="#__codelineno-104-10"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-105-1" name="__codelineno-105-1" href="#__codelineno-105-1"></a><span class="cm">/* 线性对数阶 */</span><span class="w"></span>
<a id="__codelineno-105-2" name="__codelineno-105-2" href="#__codelineno-105-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">linearLogRecur</span><span class="p">(</span><span class="kt">float</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-105-3" name="__codelineno-105-3" href="#__codelineno-105-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-105-4" name="__codelineno-105-4" href="#__codelineno-105-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span>
<a id="__codelineno-105-5" name="__codelineno-105-5" href="#__codelineno-105-5"></a><span class="w"> </span><span class="n">linearLogRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">/</span><span class="w"> </span><span class="mi">2</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-105-6" name="__codelineno-105-6" href="#__codelineno-105-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-105-7" name="__codelineno-105-7" href="#__codelineno-105-7"></a><span class="w"> </span><span class="n">count</span><span class="o">++</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-105-8" name="__codelineno-105-8" href="#__codelineno-105-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-105-9" name="__codelineno-105-9" href="#__codelineno-105-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-105-10" name="__codelineno-105-10" href="#__codelineno-105-10"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-106-1" name="__codelineno-106-1" href="#__codelineno-106-1"></a><span class="sd">&quot;&quot;&quot; 线性对数阶 &quot;&quot;&quot;</span>
<a id="__codelineno-106-2" name="__codelineno-106-2" href="#__codelineno-106-2"></a><span class="k">def</span> <span class="nf">linear_log_recur</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-106-3" name="__codelineno-106-3" href="#__codelineno-106-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">&lt;=</span> <span class="mi">1</span><span class="p">:</span> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-106-4" name="__codelineno-106-4" href="#__codelineno-106-4"></a> <span class="n">count</span> <span class="o">=</span> <span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span> <span class="o">+</span> \
<a id="__codelineno-106-5" name="__codelineno-106-5" href="#__codelineno-106-5"></a> <span class="n">linear_log_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-106-6" name="__codelineno-106-6" href="#__codelineno-106-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-106-7" name="__codelineno-106-7" href="#__codelineno-106-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="mi">1</span>
<a id="__codelineno-106-8" name="__codelineno-106-8" href="#__codelineno-106-8"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-107-1" name="__codelineno-107-1" href="#__codelineno-107-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-108-1" name="__codelineno-108-1" href="#__codelineno-108-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-109-1" name="__codelineno-109-1" href="#__codelineno-109-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-110-1" name="__codelineno-110-1" href="#__codelineno-110-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-111-1" name="__codelineno-111-1" href="#__codelineno-111-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="time_complexity_logarithmic_linear" src="../time_complexity.assets/time_complexity_logarithmic_linear.png" /></p>
<p align="center"> Fig. 线性对数阶的时间复杂度 </p>
<h3 id="on_1">阶乘阶 <span class="arithmatex">\(O(n!)\)</span><a class="headerlink" href="#on_1" title="Permanent link">&para;</a></h3>
<p>阶乘阶对应数学上的「全排列」。即给定 <span class="arithmatex">\(n\)</span> 个互不重复的元素,求其所有可能的排列方案,则方案数量为</p>
<div class="arithmatex">\[
n! = n \times (n - 1) \times (n - 2) \times \cdots \times 2 \times 1
\]</div>
<p>阶乘常使用递归实现。例如以下代码,第一层分裂出 <span class="arithmatex">\(n\)</span> 个,第二层分裂出 <span class="arithmatex">\(n - 1\)</span> 个,…… ,直至到第 <span class="arithmatex">\(n\)</span> 层时终止分裂。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="15:8"><input checked="checked" id="__tabbed_15_1" name="__tabbed_15" type="radio" /><input id="__tabbed_15_2" name="__tabbed_15" type="radio" /><input id="__tabbed_15_3" name="__tabbed_15" type="radio" /><input id="__tabbed_15_4" name="__tabbed_15" type="radio" /><input id="__tabbed_15_5" name="__tabbed_15" type="radio" /><input id="__tabbed_15_6" name="__tabbed_15" type="radio" /><input id="__tabbed_15_7" name="__tabbed_15" type="radio" /><input id="__tabbed_15_8" name="__tabbed_15" type="radio" /><div class="tabbed-labels"><label for="__tabbed_15_1">Java</label><label for="__tabbed_15_2">C++</label><label for="__tabbed_15_3">Python</label><label for="__tabbed_15_4">Go</label><label for="__tabbed_15_5">JavaScript</label><label for="__tabbed_15_6">TypeScript</label><label for="__tabbed_15_7">C</label><label for="__tabbed_15_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.java</span><pre><span></span><code><a id="__codelineno-112-1" name="__codelineno-112-1" href="#__codelineno-112-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span><span class="w"></span>
<a id="__codelineno-112-2" name="__codelineno-112-2" href="#__codelineno-112-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-112-3" name="__codelineno-112-3" href="#__codelineno-112-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-112-4" name="__codelineno-112-4" href="#__codelineno-112-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-112-5" name="__codelineno-112-5" href="#__codelineno-112-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span><span class="w"></span>
<a id="__codelineno-112-6" name="__codelineno-112-6" href="#__codelineno-112-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-112-7" name="__codelineno-112-7" href="#__codelineno-112-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-112-8" name="__codelineno-112-8" href="#__codelineno-112-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-112-9" name="__codelineno-112-9" href="#__codelineno-112-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-112-10" name="__codelineno-112-10" href="#__codelineno-112-10"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cpp</span><pre><span></span><code><a id="__codelineno-113-1" name="__codelineno-113-1" href="#__codelineno-113-1"></a><span class="cm">/* 阶乘阶(递归实现) */</span><span class="w"></span>
<a id="__codelineno-113-2" name="__codelineno-113-2" href="#__codelineno-113-2"></a><span class="kt">int</span><span class="w"> </span><span class="nf">factorialRecur</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-113-3" name="__codelineno-113-3" href="#__codelineno-113-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-113-4" name="__codelineno-113-4" href="#__codelineno-113-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-113-5" name="__codelineno-113-5" href="#__codelineno-113-5"></a><span class="w"> </span><span class="c1">// 从 1 个分裂出 n 个</span>
<a id="__codelineno-113-6" name="__codelineno-113-6" href="#__codelineno-113-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-113-7" name="__codelineno-113-7" href="#__codelineno-113-7"></a><span class="w"> </span><span class="n">count</span><span class="w"> </span><span class="o">+=</span><span class="w"> </span><span class="n">factorialRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-113-8" name="__codelineno-113-8" href="#__codelineno-113-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-113-9" name="__codelineno-113-9" href="#__codelineno-113-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">count</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-113-10" name="__codelineno-113-10" href="#__codelineno-113-10"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.py</span><pre><span></span><code><a id="__codelineno-114-1" name="__codelineno-114-1" href="#__codelineno-114-1"></a><span class="sd">&quot;&quot;&quot; 阶乘阶(递归实现)&quot;&quot;&quot;</span>
<a id="__codelineno-114-2" name="__codelineno-114-2" href="#__codelineno-114-2"></a><span class="k">def</span> <span class="nf">factorial_recur</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-114-3" name="__codelineno-114-3" href="#__codelineno-114-3"></a> <span class="k">if</span> <span class="n">n</span> <span class="o">==</span> <span class="mi">0</span><span class="p">:</span> <span class="k">return</span> <span class="mi">1</span>
<a id="__codelineno-114-4" name="__codelineno-114-4" href="#__codelineno-114-4"></a> <span class="n">count</span> <span class="o">=</span> <span class="mi">0</span>
<a id="__codelineno-114-5" name="__codelineno-114-5" href="#__codelineno-114-5"></a> <span class="c1"># 从 1 个分裂出 n 个</span>
<a id="__codelineno-114-6" name="__codelineno-114-6" href="#__codelineno-114-6"></a> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-114-7" name="__codelineno-114-7" href="#__codelineno-114-7"></a> <span class="n">count</span> <span class="o">+=</span> <span class="n">factorial_recur</span><span class="p">(</span><span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-114-8" name="__codelineno-114-8" href="#__codelineno-114-8"></a> <span class="k">return</span> <span class="n">count</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.go</span><pre><span></span><code><a id="__codelineno-115-1" name="__codelineno-115-1" href="#__codelineno-115-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.js</span><pre><span></span><code><a id="__codelineno-116-1" name="__codelineno-116-1" href="#__codelineno-116-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.ts</span><pre><span></span><code><a id="__codelineno-117-1" name="__codelineno-117-1" href="#__codelineno-117-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.c</span><pre><span></span><code><a id="__codelineno-118-1" name="__codelineno-118-1" href="#__codelineno-118-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">time_complexity_types.cs</span><pre><span></span><code><a id="__codelineno-119-1" name="__codelineno-119-1" href="#__codelineno-119-1"></a>
</code></pre></div>
</div>
</div>
</div>
<p><img alt="time_complexity_factorial" src="../time_complexity.assets/time_complexity_factorial.png" /></p>
<p align="center"> Fig. 阶乘阶的时间复杂度 </p>
<h2 id="_7">最差、最佳、平均时间复杂度<a class="headerlink" href="#_7" title="Permanent link">&para;</a></h2>
<p><strong>某些算法的时间复杂度不是恒定的,而是与输入数据的分布有关。</strong> 举一个例子,输入一个长度为 <span class="arithmatex">\(n\)</span> 数组 <code>nums</code> ,其中 <code>nums</code> 由从 <span class="arithmatex">\(1\)</span><span class="arithmatex">\(n\)</span> 的数字组成,但元素顺序是随机打乱的;算法的任务是返回元素 <span class="arithmatex">\(1\)</span> 的索引。我们可以得出以下结论:</p>
<ul>
<li><code>nums = [?, ?, ..., 1]</code>,即当末尾元素是 <span class="arithmatex">\(1\)</span> 时,则需完整遍历数组,此时达到 <strong>最差时间复杂度 <span class="arithmatex">\(O(n)\)</span></strong> </li>
<li><code>nums = [1, ?, ?, ...]</code> ,即当首个数字为 <span class="arithmatex">\(1\)</span> 时,无论数组多长都不需要继续遍历,此时达到 <strong>最佳时间复杂度 <span class="arithmatex">\(\Omega(1)\)</span></strong> </li>
</ul>
<p>「函数渐近上界」使用大 <span class="arithmatex">\(O\)</span> 记号表示,代表「最差时间复杂度」。与之对应,「函数渐近下界」用 <span class="arithmatex">\(\Omega\)</span> 记号Omega Notation来表示代表「最佳时间复杂度」。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="16:8"><input checked="checked" id="__tabbed_16_1" name="__tabbed_16" type="radio" /><input id="__tabbed_16_2" name="__tabbed_16" type="radio" /><input id="__tabbed_16_3" name="__tabbed_16" type="radio" /><input id="__tabbed_16_4" name="__tabbed_16" type="radio" /><input id="__tabbed_16_5" name="__tabbed_16" type="radio" /><input id="__tabbed_16_6" name="__tabbed_16" type="radio" /><input id="__tabbed_16_7" name="__tabbed_16" type="radio" /><input id="__tabbed_16_8" name="__tabbed_16" type="radio" /><div class="tabbed-labels"><label for="__tabbed_16_1">Java</label><label for="__tabbed_16_2">C++</label><label for="__tabbed_16_3">Python</label><label for="__tabbed_16_4">Go</label><label for="__tabbed_16_5">JavaScript</label><label for="__tabbed_16_6">TypeScript</label><label for="__tabbed_16_7">C</label><label for="__tabbed_16_8">C#</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.java</span><pre><span></span><code><a id="__codelineno-120-1" name="__codelineno-120-1" href="#__codelineno-120-1"></a><span class="kd">public</span><span class="w"> </span><span class="kd">class</span> <span class="nc">worst_best_time_complexity</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-120-2" name="__codelineno-120-2" href="#__codelineno-120-2"></a><span class="w"> </span><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span><span class="w"></span>
<a id="__codelineno-120-3" name="__codelineno-120-3" href="#__codelineno-120-3"></a><span class="w"> </span><span class="kd">static</span><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="nf">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-120-4" name="__codelineno-120-4" href="#__codelineno-120-4"></a><span class="w"> </span><span class="n">Integer</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">Integer</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-120-5" name="__codelineno-120-5" href="#__codelineno-120-5"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span><span class="w"></span>
<a id="__codelineno-120-6" name="__codelineno-120-6" href="#__codelineno-120-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-120-7" name="__codelineno-120-7" href="#__codelineno-120-7"></a><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-120-8" name="__codelineno-120-8" href="#__codelineno-120-8"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-120-9" name="__codelineno-120-9" href="#__codelineno-120-9"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span><span class="w"></span>
<a id="__codelineno-120-10" name="__codelineno-120-10" href="#__codelineno-120-10"></a><span class="w"> </span><span class="n">Collections</span><span class="p">.</span><span class="na">shuffle</span><span class="p">(</span><span class="n">Arrays</span><span class="p">.</span><span class="na">asList</span><span class="p">(</span><span class="n">nums</span><span class="p">));</span><span class="w"></span>
<a id="__codelineno-120-11" name="__codelineno-120-11" href="#__codelineno-120-11"></a><span class="w"> </span><span class="c1">// Integer[] -&gt; int[]</span><span class="w"></span>
<a id="__codelineno-120-12" name="__codelineno-120-12" href="#__codelineno-120-12"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-120-13" name="__codelineno-120-13" href="#__codelineno-120-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-120-14" name="__codelineno-120-14" href="#__codelineno-120-14"></a><span class="w"> </span><span class="n">res</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-120-15" name="__codelineno-120-15" href="#__codelineno-120-15"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-120-16" name="__codelineno-120-16" href="#__codelineno-120-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">res</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-120-17" name="__codelineno-120-17" href="#__codelineno-120-17"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-120-18" name="__codelineno-120-18" href="#__codelineno-120-18"></a>
<a id="__codelineno-120-19" name="__codelineno-120-19" href="#__codelineno-120-19"></a><span class="w"> </span><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span><span class="w"></span>
<a id="__codelineno-120-20" name="__codelineno-120-20" href="#__codelineno-120-20"></a><span class="w"> </span><span class="kd">static</span><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="nf">findOne</span><span class="p">(</span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-120-21" name="__codelineno-120-21" href="#__codelineno-120-21"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-120-22" name="__codelineno-120-22" href="#__codelineno-120-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="o">[</span><span class="n">i</span><span class="o">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"></span>
<a id="__codelineno-120-23" name="__codelineno-120-23" href="#__codelineno-120-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-120-24" name="__codelineno-120-24" href="#__codelineno-120-24"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-120-25" name="__codelineno-120-25" href="#__codelineno-120-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="o">-</span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-120-26" name="__codelineno-120-26" href="#__codelineno-120-26"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-120-27" name="__codelineno-120-27" href="#__codelineno-120-27"></a>
<a id="__codelineno-120-28" name="__codelineno-120-28" href="#__codelineno-120-28"></a><span class="w"> </span><span class="cm">/* Driver Code */</span><span class="w"></span>
<a id="__codelineno-120-29" name="__codelineno-120-29" href="#__codelineno-120-29"></a><span class="w"> </span><span class="kd">public</span><span class="w"> </span><span class="kd">static</span><span class="w"> </span><span class="kt">void</span><span class="w"> </span><span class="nf">main</span><span class="p">(</span><span class="n">String</span><span class="o">[]</span><span class="w"> </span><span class="n">args</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-120-30" name="__codelineno-120-30" href="#__codelineno-120-30"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">10</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-120-31" name="__codelineno-120-31" href="#__codelineno-120-31"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-120-32" name="__codelineno-120-32" href="#__codelineno-120-32"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="n">n</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-120-33" name="__codelineno-120-33" href="#__codelineno-120-33"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">index</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">nums</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-120-34" name="__codelineno-120-34" href="#__codelineno-120-34"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="s">&quot;打乱后的数组为 &quot;</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">Arrays</span><span class="p">.</span><span class="na">toString</span><span class="p">(</span><span class="n">nums</span><span class="p">));</span><span class="w"></span>
<a id="__codelineno-120-35" name="__codelineno-120-35" href="#__codelineno-120-35"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="s">&quot;数字 1 的索引为 &quot;</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">index</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-120-36" name="__codelineno-120-36" href="#__codelineno-120-36"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-120-37" name="__codelineno-120-37" href="#__codelineno-120-37"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-120-38" name="__codelineno-120-38" href="#__codelineno-120-38"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.cpp</span><pre><span></span><code><a id="__codelineno-121-1" name="__codelineno-121-1" href="#__codelineno-121-1"></a><span class="cm">/* 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱 */</span><span class="w"></span>
<a id="__codelineno-121-2" name="__codelineno-121-2" href="#__codelineno-121-2"></a><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-121-3" name="__codelineno-121-3" href="#__codelineno-121-3"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="p">(</span><span class="n">n</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-121-4" name="__codelineno-121-4" href="#__codelineno-121-4"></a><span class="w"> </span><span class="c1">// 生成数组 nums = { 1, 2, 3, ..., n }</span>
<a id="__codelineno-121-5" name="__codelineno-121-5" href="#__codelineno-121-5"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-121-6" name="__codelineno-121-6" href="#__codelineno-121-6"></a><span class="w"> </span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mi">1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-121-7" name="__codelineno-121-7" href="#__codelineno-121-7"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-121-8" name="__codelineno-121-8" href="#__codelineno-121-8"></a><span class="w"> </span><span class="c1">// 使用系统时间生成随机种子</span>
<a id="__codelineno-121-9" name="__codelineno-121-9" href="#__codelineno-121-9"></a><span class="w"> </span><span class="kt">unsigned</span><span class="w"> </span><span class="n">seed</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">chrono</span><span class="o">::</span><span class="n">system_clock</span><span class="o">::</span><span class="n">now</span><span class="p">().</span><span class="n">time_since_epoch</span><span class="p">().</span><span class="n">count</span><span class="p">();</span><span class="w"></span>
<a id="__codelineno-121-10" name="__codelineno-121-10" href="#__codelineno-121-10"></a><span class="w"> </span><span class="c1">// 随机打乱数组元素</span>
<a id="__codelineno-121-11" name="__codelineno-121-11" href="#__codelineno-121-11"></a><span class="w"> </span><span class="n">shuffle</span><span class="p">(</span><span class="n">nums</span><span class="p">.</span><span class="n">begin</span><span class="p">(),</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">end</span><span class="p">(),</span><span class="w"> </span><span class="n">default_random_engine</span><span class="p">(</span><span class="n">seed</span><span class="p">));</span><span class="w"></span>
<a id="__codelineno-121-12" name="__codelineno-121-12" href="#__codelineno-121-12"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">nums</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-121-13" name="__codelineno-121-13" href="#__codelineno-121-13"></a><span class="p">}</span><span class="w"></span>
<a id="__codelineno-121-14" name="__codelineno-121-14" href="#__codelineno-121-14"></a>
<a id="__codelineno-121-15" name="__codelineno-121-15" href="#__codelineno-121-15"></a><span class="cm">/* 查找数组 nums 中数字 1 所在索引 */</span><span class="w"></span>
<a id="__codelineno-121-16" name="__codelineno-121-16" href="#__codelineno-121-16"></a><span class="kt">int</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;&amp;</span><span class="w"> </span><span class="n">nums</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-121-17" name="__codelineno-121-17" href="#__codelineno-121-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="n">size</span><span class="p">();</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-121-18" name="__codelineno-121-18" href="#__codelineno-121-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mi">1</span><span class="p">)</span><span class="w"></span>
<a id="__codelineno-121-19" name="__codelineno-121-19" href="#__codelineno-121-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">i</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-121-20" name="__codelineno-121-20" href="#__codelineno-121-20"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-121-21" name="__codelineno-121-21" href="#__codelineno-121-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">-1</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-121-22" name="__codelineno-121-22" href="#__codelineno-121-22"></a><span class="p">}</span><span class="w"></span>
<a id="__codelineno-121-23" name="__codelineno-121-23" href="#__codelineno-121-23"></a>
<a id="__codelineno-121-24" name="__codelineno-121-24" href="#__codelineno-121-24"></a>
<a id="__codelineno-121-25" name="__codelineno-121-25" href="#__codelineno-121-25"></a><span class="cm">/* Driver Code */</span><span class="w"></span>
<a id="__codelineno-121-26" name="__codelineno-121-26" href="#__codelineno-121-26"></a><span class="kt">int</span><span class="w"> </span><span class="n">main</span><span class="p">()</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-121-27" name="__codelineno-121-27" href="#__codelineno-121-27"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="mi">1000</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"></span>
<a id="__codelineno-121-28" name="__codelineno-121-28" href="#__codelineno-121-28"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">100</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-121-29" name="__codelineno-121-29" href="#__codelineno-121-29"></a><span class="w"> </span><span class="n">vector</span><span class="o">&lt;</span><span class="kt">int</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">randomNumbers</span><span class="p">(</span><span class="n">n</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-121-30" name="__codelineno-121-30" href="#__codelineno-121-30"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">index</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">findOne</span><span class="p">(</span><span class="n">nums</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-121-31" name="__codelineno-121-31" href="#__codelineno-121-31"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="s">&quot;</span><span class="se">\n</span><span class="s">数组 [ 1, 2, ..., n ] 被打乱后 = &quot;</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-121-32" name="__codelineno-121-32" href="#__codelineno-121-32"></a><span class="w"> </span><span class="n">PrintUtil</span><span class="o">::</span><span class="n">printVector</span><span class="p">(</span><span class="n">nums</span><span class="p">);</span><span class="w"></span>
<a id="__codelineno-121-33" name="__codelineno-121-33" href="#__codelineno-121-33"></a><span class="w"> </span><span class="n">cout</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="s">&quot;数字 1 的索引为 &quot;</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">index</span><span class="w"> </span><span class="o">&lt;&lt;</span><span class="w"> </span><span class="n">endl</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-121-34" name="__codelineno-121-34" href="#__codelineno-121-34"></a><span class="w"> </span><span class="p">}</span><span class="w"></span>
<a id="__codelineno-121-35" name="__codelineno-121-35" href="#__codelineno-121-35"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"></span>
<a id="__codelineno-121-36" name="__codelineno-121-36" href="#__codelineno-121-36"></a><span class="p">}</span><span class="w"></span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.py</span><pre><span></span><code><a id="__codelineno-122-1" name="__codelineno-122-1" href="#__codelineno-122-1"></a><span class="sd">&quot;&quot;&quot; 生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱 &quot;&quot;&quot;</span>
<a id="__codelineno-122-2" name="__codelineno-122-2" href="#__codelineno-122-2"></a><span class="k">def</span> <span class="nf">random_numbers</span><span class="p">(</span><span class="n">n</span><span class="p">):</span>
<a id="__codelineno-122-3" name="__codelineno-122-3" href="#__codelineno-122-3"></a> <span class="c1"># 生成数组 nums =: 1, 2, 3, ..., n </span>
<a id="__codelineno-122-4" name="__codelineno-122-4" href="#__codelineno-122-4"></a> <span class="n">nums</span> <span class="o">=</span> <span class="p">[</span><span class="n">i</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)]</span>
<a id="__codelineno-122-5" name="__codelineno-122-5" href="#__codelineno-122-5"></a> <span class="c1"># 随机打乱数组元素</span>
<a id="__codelineno-122-6" name="__codelineno-122-6" href="#__codelineno-122-6"></a> <span class="n">random</span><span class="o">.</span><span class="n">shuffle</span><span class="p">(</span><span class="n">nums</span><span class="p">)</span>
<a id="__codelineno-122-7" name="__codelineno-122-7" href="#__codelineno-122-7"></a> <span class="k">return</span> <span class="n">nums</span>
<a id="__codelineno-122-8" name="__codelineno-122-8" href="#__codelineno-122-8"></a>
<a id="__codelineno-122-9" name="__codelineno-122-9" href="#__codelineno-122-9"></a><span class="sd">&quot;&quot;&quot; 查找数组 nums 中数字 1 所在索引 &quot;&quot;&quot;</span>
<a id="__codelineno-122-10" name="__codelineno-122-10" href="#__codelineno-122-10"></a><span class="k">def</span> <span class="nf">find_one</span><span class="p">(</span><span class="n">nums</span><span class="p">):</span>
<a id="__codelineno-122-11" name="__codelineno-122-11" href="#__codelineno-122-11"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">nums</span><span class="p">)):</span>
<a id="__codelineno-122-12" name="__codelineno-122-12" href="#__codelineno-122-12"></a> <span class="k">if</span> <span class="n">nums</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<a id="__codelineno-122-13" name="__codelineno-122-13" href="#__codelineno-122-13"></a> <span class="k">return</span> <span class="n">i</span>
<a id="__codelineno-122-14" name="__codelineno-122-14" href="#__codelineno-122-14"></a> <span class="k">return</span> <span class="o">-</span><span class="mi">1</span>
<a id="__codelineno-122-15" name="__codelineno-122-15" href="#__codelineno-122-15"></a>
<a id="__codelineno-122-16" name="__codelineno-122-16" href="#__codelineno-122-16"></a><span class="sd">&quot;&quot;&quot; Driver Code &quot;&quot;&quot;</span>
<a id="__codelineno-122-17" name="__codelineno-122-17" href="#__codelineno-122-17"></a><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s2">&quot;__main__&quot;</span><span class="p">:</span>
<a id="__codelineno-122-18" name="__codelineno-122-18" href="#__codelineno-122-18"></a> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">):</span>
<a id="__codelineno-122-19" name="__codelineno-122-19" href="#__codelineno-122-19"></a> <span class="n">n</span> <span class="o">=</span> <span class="mi">100</span>
<a id="__codelineno-122-20" name="__codelineno-122-20" href="#__codelineno-122-20"></a> <span class="n">nums</span> <span class="o">=</span> <span class="n">random_numbers</span><span class="p">(</span><span class="n">n</span><span class="p">)</span>
<a id="__codelineno-122-21" name="__codelineno-122-21" href="#__codelineno-122-21"></a> <span class="n">index</span> <span class="o">=</span> <span class="n">find_one</span><span class="p">(</span><span class="n">nums</span><span class="p">)</span>
<a id="__codelineno-122-22" name="__codelineno-122-22" href="#__codelineno-122-22"></a> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;</span><span class="se">\n</span><span class="s2">数组 [ 1, 2, ..., n ] 被打乱后 =&quot;</span><span class="p">,</span> <span class="n">nums</span><span class="p">)</span>
<a id="__codelineno-122-23" name="__codelineno-122-23" href="#__codelineno-122-23"></a> <span class="nb">print</span><span class="p">(</span><span class="s2">&quot;数字 1 的索引为&quot;</span><span class="p">,</span> <span class="n">index</span><span class="p">)</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.go</span><pre><span></span><code><a id="__codelineno-123-1" name="__codelineno-123-1" href="#__codelineno-123-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.js</span><pre><span></span><code><a id="__codelineno-124-1" name="__codelineno-124-1" href="#__codelineno-124-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.ts</span><pre><span></span><code><a id="__codelineno-125-1" name="__codelineno-125-1" href="#__codelineno-125-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.c</span><pre><span></span><code><a id="__codelineno-126-1" name="__codelineno-126-1" href="#__codelineno-126-1"></a>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">worst_best_time_complexity.cs</span><pre><span></span><code><a id="__codelineno-127-1" name="__codelineno-127-1" href="#__codelineno-127-1"></a>
</code></pre></div>
</div>
</div>
</div>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>我们在实际应用中很少使用「最佳时间复杂度」,因为往往只有很小概率下才能达到,会带来一定的误导性。反之,「最差时间复杂度」最为实用,因为它给出了一个 “效率安全值” ,让我们可以放心地使用算法。</p>
</div>
<p>从上述示例可以看出,最差或最佳时间复杂度只出现在 “特殊分布的数据” 中,这些情况的出现概率往往很小,因此并不能最真实地反映算法运行效率。<strong>相对地,「平均时间复杂度」可以体现算法在随机输入数据下的运行效率,用 <span class="arithmatex">\(\Theta\)</span> 记号Theta Notation来表示</strong></p>
<p>对于部分算法,我们可以简单地推算出随机数据分布下的平均情况。比如上述示例,由于输入数组是被打乱的,因此元素 <span class="arithmatex">\(1\)</span> 出现在任意索引的概率都是相等的,那么算法的平均循环次数则是数组长度的一半 <span class="arithmatex">\(\frac{n}{2}\)</span> ,平均时间复杂度为 <span class="arithmatex">\(\Theta(\frac{n}{2}) = \Theta(n)\)</span></p>
<p>但在实际应用中,尤其是较为复杂的算法,计算平均时间复杂度比较困难,因为很难简便地分析出在数据分布下的整体数学期望。这种情况下,我们一般使用最差时间复杂度来作为算法效率的评判标准。</p>
<div class="admonition question">
<p class="admonition-title">为什么很少看到 <span class="arithmatex">\(\Theta\)</span> 符号?</p>
<p>实际中我们经常使用「大 <span class="arithmatex">\(O\)</span> 符号」来表示「平均复杂度」,这样严格意义上来说是不规范的。这可能是因为 <span class="arithmatex">\(O\)</span> 符号实在是太朗朗上口了。</br>如果在本书和其他资料中看到类似 <strong>平均时间复杂度 <span class="arithmatex">\(O(n)\)</span></strong> 的表述,请你直接理解为 <span class="arithmatex">\(\Theta(n)\)</span> 即可。</p>
</div>
<h2 id="__comments">评论</h2>
<!-- Insert generated snippet here -->
<script
src="https://giscus.app/client.js"
data-repo="krahets/hello-algo"
data-repo-id="R_kgDOIXtSqw"
data-category="Announcements"
data-category-id="DIC_kwDOIXtSq84CSZk_"
data-mapping="pathname"
data-strict="0"
data-reactions-enabled="1"
data-emit-metadata="0"
data-input-position="bottom"
data-theme="preferred_color_scheme"
data-lang="zh-CN"
crossorigin="anonymous"
async
>
</script>
<!-- Synchronize Giscus theme with palette -->
<script>
var giscus = document.querySelector("script[src*=giscus]")
/* Set palette on initial load */
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
giscus.setAttribute("data-theme", theme)
}
/* Register event handlers after documented loaded */
document.addEventListener("DOMContentLoaded", function() {
var ref = document.querySelector("[data-md-component=palette]")
ref.addEventListener("change", function() {
var palette = __md_get("__palette")
if (palette && typeof palette.color === "object") {
var theme = palette.color.scheme === "slate" ? "dark" : "light"
/* Instruct Giscus to change theme */
var frame = document.querySelector(".giscus-frame")
frame.contentWindow.postMessage(
{ giscus: { setConfig: { theme } } },
"https://giscus.app"
)
}
})
})
</script>
</article>
</div>
<script>var tabs=__md_get("__tabs");if(Array.isArray(tabs))e:for(var set of document.querySelectorAll(".tabbed-set")){var tab,labels=set.querySelector(".tabbed-labels");for(tab of tabs)for(var label of labels.getElementsByTagName("label"))if(label.innerText.trim()===tab){var input=document.getElementById(label.htmlFor);input.checked=!0;continue e}}</script>
</div>
</main>
<footer class="md-footer">
<div class="md-footer-meta md-typeset">
<div class="md-footer-meta__inner md-grid">
<div class="md-copyright">
<div class="md-copyright__highlight">
Copyright &copy; 2020 - 2022 Krahets
</div>
</div>
<div class="md-social">
<a href="https://github.com/krahets" target="_blank" rel="noopener" title="github.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 496 512"><!--! Font Awesome Free 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc.--><path d="M165.9 397.4c0 2-2.3 3.6-5.2 3.6-3.3.3-5.6-1.3-5.6-3.6 0-2 2.3-3.6 5.2-3.6 3-.3 5.6 1.3 5.6 3.6zm-31.1-4.5c-.7 2 1.3 4.3 4.3 4.9 2.6 1 5.6 0 6.2-2s-1.3-4.3-4.3-5.2c-2.6-.7-5.5.3-6.2 2.3zm44.2-1.7c-2.9.7-4.9 2.6-4.6 4.9.3 2 2.9 3.3 5.9 2.6 2.9-.7 4.9-2.6 4.6-4.6-.3-1.9-3-3.2-5.9-2.9zM244.8 8C106.1 8 0 113.3 0 252c0 110.9 69.8 205.8 169.5 239.2 12.8 2.3 17.3-5.6 17.3-12.1 0-6.2-.3-40.4-.3-61.4 0 0-70 15-84.7-29.8 0 0-11.4-29.1-27.8-36.6 0 0-22.9-15.7 1.6-15.4 0 0 24.9 2 38.6 25.8 21.9 38.6 58.6 27.5 72.9 20.9 2.3-16 8.8-27.1 16-33.7-55.9-6.2-112.3-14.3-112.3-110.5 0-27.5 7.6-41.3 23.6-58.9-2.6-6.5-11.1-33.3 2.6-67.9 20.9-6.5 69 27 69 27 20-5.6 41.5-8.5 62.8-8.5s42.8 2.9 62.8 8.5c0 0 48.1-33.6 69-27 13.7 34.7 5.2 61.4 2.6 67.9 16 17.7 25.8 31.5 25.8 58.9 0 96.5-58.9 104.2-114.8 110.5 9.2 7.9 17 22.9 17 46.4 0 33.7-.3 75.4-.3 83.6 0 6.5 4.6 14.4 17.3 12.1C428.2 457.8 496 362.9 496 252 496 113.3 383.5 8 244.8 8zM97.2 352.9c-1.3 1-1 3.3.7 5.2 1.6 1.6 3.9 2.3 5.2 1 1.3-1 1-3.3-.7-5.2-1.6-1.6-3.9-2.3-5.2-1zm-10.8-8.1c-.7 1.3.3 2.9 2.3 3.9 1.6 1 3.6.7 4.3-.7.7-1.3-.3-2.9-2.3-3.9-2-.6-3.6-.3-4.3.7zm32.4 35.6c-1.6 1.3-1 4.3 1.3 6.2 2.3 2.3 5.2 2.6 6.5 1 1.3-1.3.7-4.3-1.3-6.2-2.2-2.3-5.2-2.6-6.5-1zm-11.4-14.7c-1.6 1-1.6 3.6 0 5.9 1.6 2.3 4.3 3.3 5.6 2.3 1.6-1.3 1.6-3.9 0-6.2-1.4-2.3-4-3.3-5.6-2z"/></svg>
</a>
<a href="https://twitter.com/krahets" target="_blank" rel="noopener" title="twitter.com" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><!--! Font Awesome Free 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc.--><path d="M459.37 151.716c.325 4.548.325 9.097.325 13.645 0 138.72-105.583 298.558-298.558 298.558-59.452 0-114.68-17.219-161.137-47.106 8.447.974 16.568 1.299 25.34 1.299 49.055 0 94.213-16.568 130.274-44.832-46.132-.975-84.792-31.188-98.112-72.772 6.498.974 12.995 1.624 19.818 1.624 9.421 0 18.843-1.3 27.614-3.573-48.081-9.747-84.143-51.98-84.143-102.985v-1.299c13.969 7.797 30.214 12.67 47.431 13.319-28.264-18.843-46.781-51.005-46.781-87.391 0-19.492 5.197-37.36 14.294-52.954 51.655 63.675 129.3 105.258 216.365 109.807-1.624-7.797-2.599-15.918-2.599-24.04 0-57.828 46.782-104.934 104.934-104.934 30.213 0 57.502 12.67 76.67 33.137 23.715-4.548 46.456-13.32 66.599-25.34-7.798 24.366-24.366 44.833-46.132 57.827 21.117-2.273 41.584-8.122 60.426-16.243-14.292 20.791-32.161 39.308-52.628 54.253z"/></svg>
</a>
<a href="https://leetcode.cn/u/jyd/" target="_blank" rel="noopener" title="leetcode.cn" class="md-social__link">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 640 512"><!--! Font Awesome Free 6.2.1 by @fontawesome - https://fontawesome.com License - https://fontawesome.com/license/free (Icons: CC BY 4.0, Fonts: SIL OFL 1.1, Code: MIT License) Copyright 2022 Fonticons, Inc.--><path d="M392.8 1.2c-17-4.9-34.7 5-39.6 22l-128 448c-4.9 17 5 34.7 22 39.6s34.7-5 39.6-22l128-448c4.9-17-5-34.7-22-39.6zm80.6 120.1c-12.5 12.5-12.5 32.8 0 45.3l89.3 89.4-89.4 89.4c-12.5 12.5-12.5 32.8 0 45.3s32.8 12.5 45.3 0l112-112c12.5-12.5 12.5-32.8 0-45.3l-112-112c-12.5-12.5-32.8-12.5-45.3 0zm-306.7 0c-12.5-12.5-32.8-12.5-45.3 0l-112 112c-12.5 12.5-12.5 32.8 0 45.3l112 112c12.5 12.5 32.8 12.5 45.3 0s12.5-32.8 0-45.3L77.3 256l89.4-89.4c12.5-12.5 12.5-32.8 0-45.3z"/></svg>
</a>
</div>
</div>
</div>
</footer>
</div>
<div class="md-dialog" data-md-component="dialog">
<div class="md-dialog__inner md-typeset"></div>
</div>
<script id="__config" type="application/json">{"base": "../..", "features": ["announce.dismiss", "content.code.annotate", "content.code.copy", "content.tabs.link", "content.tooltips", "navigation.indexes", "navigation.sections", "navigation.tracking", "search.highlight", "search.share", "search.suggest", "toc.follow"], "search": "../../assets/javascripts/workers/search.208e55ea.min.js", "translations": {"clipboard.copied": "\u5df2\u590d\u5236", "clipboard.copy": "\u590d\u5236", "search.result.more.one": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.more.other": "\u5728\u8be5\u9875\u4e0a\u8fd8\u6709 # \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.none": "\u6ca1\u6709\u627e\u5230\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.one": "\u627e\u5230 1 \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.other": "# \u4e2a\u7b26\u5408\u6761\u4ef6\u7684\u7ed3\u679c", "search.result.placeholder": "\u952e\u5165\u4ee5\u5f00\u59cb\u641c\u7d22", "search.result.term.missing": "\u7f3a\u5c11", "select.version": "\u9009\u62e9\u5f53\u524d\u7248\u672c"}}</script>
<script src="../../assets/javascripts/bundle.f1ef77e2.min.js"></script>
<script src="../../javascripts/mathjax.js"></script>
<script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
<script src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
</body>
</html>