mirror of
https://github.com/chefyuan/algorithm-base.git
synced 2024-11-28 14:58:55 +00:00
127 lines
4.4 KiB
Java
127 lines
4.4 KiB
Java
|
之前给大家介绍了二叉树的[前序遍历](),[中序遍历]()的迭代法和 Morris 方法,今天咱们来说一下二叉后序遍历的迭代法及 Morris 方法。
|
|||
|
|
|||
|
注:阅读该文章前,建议各位先阅读之前的三篇文章,对该文章的理解有很大帮助。
|
|||
|
|
|||
|
## Morris
|
|||
|
|
|||
|
后序遍历的 Morris 方法也比之前两种代码稍微长一些,看着挺唬人,其实不难,和我们之前说的没差多少。下面我们一起来干掉它吧。
|
|||
|
|
|||
|
我们先来复习下之前说过的[中序遍历](),见下图。
|
|||
|
|
|||
|
![](https://img-blog.csdnimg.cn/20210622155624486.gif)
|
|||
|
|
|||
|
另外我们来对比下,中序遍历和后序遍历的 Morris 方法,代码有哪里不同。
|
|||
|
|
|||
|
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210622142148928.png)
|
|||
|
|
|||
|
由上图可知,仅仅有三处不同,后序遍历里少了 `list.add()`,多了一个函数` postMorris() ` ,那后序遍历的 list.add() 肯定是在 postMorris 函数中的。所以我们搞懂了 postMorris 函数,也就搞懂了后序遍历的 Morris 方法(默认大家看了之前的文章,没有看过的同学,可以点击文首的链接)
|
|||
|
|
|||
|
下面我们一起来剖析下 postMorris 函数.代码如下
|
|||
|
|
|||
|
```java
|
|||
|
public void postMorris(TreeNode root) {
|
|||
|
//反转转链表,详情看下方图片
|
|||
|
TreeNode reverseNode = reverseList(root);
|
|||
|
//遍历链表
|
|||
|
TreeNode cur = reverseNode;
|
|||
|
while (cur != null) {
|
|||
|
list.add(cur.val);
|
|||
|
cur = cur.right;
|
|||
|
}
|
|||
|
//反转回来
|
|||
|
reverseList(reverseNode);
|
|||
|
}
|
|||
|
|
|||
|
//反转链表
|
|||
|
public TreeNode reverseList(TreeNode head) {
|
|||
|
TreeNode cur = head;
|
|||
|
TreeNode pre = null;
|
|||
|
while (cur != null) {
|
|||
|
TreeNode next = cur.right;
|
|||
|
cur.right = pre;
|
|||
|
pre = cur;
|
|||
|
cur = next;
|
|||
|
}
|
|||
|
return pre;
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
上面的代码,是不是贼熟悉,和我们的倒序输出链表一致,步骤为,反转链表,遍历链表,将链表反转回原样。只不过我们将 ListNode.next 写成了 TreeNode.right 将树中的遍历右子节点的路线,看成了一个链表,见下图。
|
|||
|
|
|||
|
![](https://img-blog.csdnimg.cn/20210622145335283.png)
|
|||
|
|
|||
|
上图中的一个绿色虚线,代表一个链表,我们根据序号进行倒序遍历,看下是什么情况
|
|||
|
|
|||
|
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210622145805876.png)
|
|||
|
|
|||
|
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210622145846117.png)
|
|||
|
|
|||
|
到这块是不是就整懂啦,打完收工!
|
|||
|
|
|||
|
```java
|
|||
|
class Solution {
|
|||
|
List<Integer> list;
|
|||
|
public List<Integer> postorderTraversal(TreeNode root) {
|
|||
|
list = new ArrayList<>();
|
|||
|
if (root == null) {
|
|||
|
return list;
|
|||
|
}
|
|||
|
TreeNode p1 = root;
|
|||
|
TreeNode p2 = null;
|
|||
|
while (p1 != null) {
|
|||
|
p2 = p1.left;
|
|||
|
if (p2 != null) {
|
|||
|
while (p2.right != null && p2.right != p1) {
|
|||
|
p2 = p2.right;
|
|||
|
}
|
|||
|
if (p2.right == null) {
|
|||
|
p2.right = p1;
|
|||
|
p1 = p1.left;
|
|||
|
continue;
|
|||
|
} else {
|
|||
|
p2.right = null;
|
|||
|
postMorris(p1.left);
|
|||
|
}
|
|||
|
}
|
|||
|
p1 = p1.right;
|
|||
|
}
|
|||
|
//以根节点为起点的链表
|
|||
|
postMorris(root);
|
|||
|
return list;
|
|||
|
}
|
|||
|
public void postMorris(TreeNode root) {
|
|||
|
//翻转链表
|
|||
|
TreeNode reverseNode = reverseList(root);
|
|||
|
//从后往前遍历
|
|||
|
TreeNode cur = reverseNode;
|
|||
|
while (cur != null) {
|
|||
|
list.add(cur.val);
|
|||
|
cur = cur.right;
|
|||
|
}
|
|||
|
//翻转回来
|
|||
|
reverseList(reverseNode);
|
|||
|
}
|
|||
|
public TreeNode reverseList(TreeNode head) {
|
|||
|
TreeNode cur = head;
|
|||
|
TreeNode pre = null;
|
|||
|
while (cur != null) {
|
|||
|
TreeNode next = cur.right;
|
|||
|
cur.right = pre;
|
|||
|
pre = cur;
|
|||
|
cur = next;
|
|||
|
}
|
|||
|
return pre;
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
```
|
|||
|
|
|||
|
时间复杂度 O(n)空间复杂度 O(1)
|
|||
|
|
|||
|
总结:后序遍历比起前序和中序稍微复杂了一些,所以我们解题的时候,需要好好注意一下,迭代法的核心是利用一个指针来定位我们上一个遍历的节点,Morris 的核心是,将某节点的右子节点,看成是一条链表,进行反向遍历。
|
|||
|
|
|||
|
好啦,今天就唠到这吧,拜了个拜。
|
|||
|
|
|||
|
|
|||
|
|