algorithm-base/animation-simulation/二叉树/二叉树中序遍历(迭代).md
2021-07-29 02:33:38 +00:00

108 lines
3.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

哈喽大家好,我是厨子,之前我们说了二叉树前序遍历的迭代法和 Morris今天咱们写一下中序遍历的迭代法和 Morris。
> 注:数据结构掌握不熟练的同学,阅读该文章之前,可以先阅读这两篇文章,二叉树基础,前序遍历另外喜欢电脑阅读的同学,可以在小屋后台回复仓库地址,获取 Github 链接进行阅读。
中序遍历的顺序是, `对于树中的某节点,先遍历该节点的左子树, 然后再遍历该节点, 最后遍历其右子树`。老规矩,上动画,我们先通过动画回忆一下二叉树的中序遍历。
![中序遍历](https://cdn.jsdelivr.net/gh/tan45du/test@master/photo/中序遍历.7gct7ztck8k0.gif)
注:二叉树基础总结大家可以阅读这篇文章,点我。
## 迭代法
我们二叉树的中序遍历迭代法和前序遍历是一样的,都是借助栈来帮助我们完成。
我们结合动画思考一下,该如何借助栈来实现呢?
我们来看下面这个动画。
![在这里插入图片描述](https://img-blog.csdnimg.cn/20210608010104232.gif)
用栈实现的二叉树的中序遍历有两个关键的地方。
- 指针不断向节点的左孩子移动,为了找到我们当前需要遍历的节点。途中不断执行入栈操作
- 当指针为空时,则开始出栈,并将指针指向出栈节点的右孩子。
这两个关键点也很容易理解,指针不断向左孩子移动,是为了找到我们此时需要节点。然后当指针指向空时,则说明我们此时已经找到该节点,执行出栈操作,并将其值存入 list 即可,另外我们需要将指针指向出栈节点的右孩子,迭代执行上诉操作。
大家是不是已经知道怎么写啦,下面我们看代码吧。
```java
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> arr = new ArrayList<>();
TreeNode cur = new TreeNode(-1);
cur = root;
Stack<TreeNode> stack = new Stack<>();
while (!stack.isEmpty() || cur != null) {
//找到当前应该遍历的那个节点
while (cur != null) {
stack.push(cur);
cur = cur.left;
}
//此时指针指向空,也就是没有左子节点,则开始执行出栈操作
TreeNode temp = stack.pop();
arr.add(temp.val);
//指向右子节点
cur = temp.right;
}
return arr;
}
}
```
Swift Code
```swift
class Solution {
func inorderTraversal(_ root: TreeNode?) -> [Int] {
var arr:[Int] = []
var cur = root
var stack:[TreeNode] = []
while !stack.isEmpty || cur != nil {
//找到当前应该遍历的那个节点
while cur != nil {
stack.append(cur!)
cur = cur!.left
}
//此时指针指向空,也就是没有左子节点,则开始执行出栈操作
if let temp = stack.popLast() {
arr.append(temp.val)
//指向右子节点
cur = temp.right
}
}
return arr
}
}
```
Go Code:
```go
func inorderTraversal(root *TreeNode) []int {
res := []int{}
if root == nil {
return res
}
stk := []*TreeNode{}
cur := root
for len(stk) != 0 || cur != nil {
// 找到当前应该遍历的那个节点,并且把左子节点都入栈
for cur != nil {
stk = append(stk, cur)
cur = cur.Left
}
// 没有左子节点,则开始执行出栈操作
temp := stk[len(stk) - 1]
stk = stk[: len(stk) - 1]
res = append(res, temp.Val)
cur = temp.Right
}
return res
}
```
###