algorithm-base/gif-algorithm/数组篇/leetcode1052爱生气的书店老板.md
chefyuan 18cb6d1384 111
2021-03-17 20:50:45 +08:00

96 lines
3.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

**题目描述**
今天,书店老板有一家店打算试营业 customers.length 分钟。每分钟都有一些顾客customers[i])会进入书店,所有这些顾客都会在那一分钟结束后离开。
在某些时候,书店老板会生气。 如果书店老板在第 i 分钟生气,那么 grumpy[i] = 1否则 grumpy[i] = 0。 当书店老板生气时,那一分钟的顾客就会不满意,不生气则他们是满意的。
书店老板知道一个秘密技巧,能抑制自己的情绪,可以让自己连续 X 分钟不生气,但却只能使用一次。
请你返回这一天营业下来,最多有多少客户能够感到满意的数量。
示例:
> 输入customers = [1,0,1,2,1,1,7,5], grumpy = [0,1,0,1,0,1,0,1], X = 3
> 输出16
解释:
书店老板在最后 3 分钟保持冷静。
感到满意的最大客户数量 = 1 + 1 + 1 + 1 + 7 + 5 = 16.
该题目思想就是,我们将 customer 数组的值分为三部分, leftsum, winsum, rightsum。我们题目的返回值则是三部分的最大和。
注意这里的最大和,我们是怎么计算的。
![](https://cdn.jsdelivr.net/gh/tan45du/test1@master/20210122/微信截图_20210223083057.1vns7wrs2z0.png)
winsum 是窗口内的所有值,不管 grumpy[i] 的值是 0 还是 1,窗口的大小,就对应 K 的值,也就是老板的技能发动时间,该时间段内,老板不会生气,所以为所有的值。
leftsum 是窗口左边区间的值,此时我们不能为所有值,只能是 grumpy[i] == 0 时才可以加入,因为此时不是技能发动期,老板只有在 grumpy[i] == 0 时,才不会生气。
rightsum 是窗口右区间的值,和左区间加和方式一样。那么我们易懂一下窗口,我们的 win 值和 leftsum 值rightsum 值是怎么变化的呢?
见下图
![](https://cdn.jsdelivr.net/gh/tan45du/test1@master/20210122/微信截图_20210223084549.5ht4nytfe1o0.png)
我们此时移动了窗口,
则左半区间范围扩大,但是 leftsum 的值没有变,这时因为新加入的值,所对应的 grumpy[i] == 1所以其值不会发生改变因为我们只统计 grumpy[i] == 0 的值,
右半区间范围减少rightsum 值也减少,因为右半区间减小的值,其对应的 grumpy[i] == 0所以 rightsum -= grumpy[i]。
winsum 也会发生变化, winsum 需要加上新加入窗口的值,减去刚离开窗口的值, 也就是 customer[left-1]left 代表窗口左边缘。
好啦,知道怎么做了,我们直接开整吧。
```java
class Solution {
public int maxSatisfied(int[] customers, int[] grumpy, int X) {
int winsum = 0;
int rightsum = 0;
int len = customers.length;
//右区间的值
for (int i = X; i < len; ++i) {
if (grumpy[i] == 0) {
rightsum += customers[i];
}
}
//窗口的值
for (int i = 0; i < X; ++i) {
winsum += customers[i];
}
int leftsum = 0;
//窗口左边缘
int left = 1;
//窗口右边缘
int right = X;
int maxcustomer = winsum + leftsum + rightsum;
while (right < customers.length) {
//重新计算左区间的值,也可以用 customer 值和 grumpy 值相乘获得
if (grumpy[left-1] == 0) {
leftsum += customers[left-1];
}
//重新计算右区间值
if (grumpy[right] == 0) {
rightsum -= customers[right];
}
//窗口值
winsum = winsum - customers[left-1] + customers[right];
//保留最大值
maxcustomer = Math.max(maxcustomer,winsum+leftsum+rightsum);
//移动窗口
left++;
right++;
}
return maxcustomer;
}
}
```