mirror of
https://github.com/chefyuan/algorithm-base.git
synced 2024-11-16 17:13:39 +00:00
2.9 KiB
2.9 KiB
该题目思想就是,我们将 customer 数组的值分为三部分, leftsum, winsum, rightsum。我们题目的返回值则是三部分的最大和。
注意这里的最大和,我们是怎么计算的。
winsum 是窗口内的所有值,不管 grumpy[i] 的值是 0 还是 1,窗口的大小,就对应 K 的值,也就是老板的技能发动时间,该时间段内,老板不会生气,所以为所有的值。
leftsum 是窗口左边区间的值,此时我们不能为所有值,只能是 grumpy[i] == 0 时才可以加入,因为此时不是技能发动期,老板只有在 grumpy[i] == 0 时,才不会生气。
rightsum 是窗口右区间的值,和左区间加和方式一样。那么我们易懂一下窗口,我们的 win 值和 leftsum 值,rightsum 值是怎么变化的呢?
见下图
我们此时移动了窗口,
则左半区间范围扩大,但是 leftsum 的值没有变,这时因为新加入的值,所对应的 grumpy[i] == 1,所以其值不会发生改变,因为我们只统计 grumpy[i] == 0 的值,
右半区间范围减少,rightsum 值也减少,因为右半区间减小的值,其对应的 grumpy[i] == 0,所以 rightsum -= grumpy[i]。
winsum 也会发生变化, winsum 需要加上新加入窗口的值,减去刚离开窗口的值, 也就是 customer[left-1],left 代表窗口左边缘。
好啦,知道怎么做了,我们直接开整吧。
class Solution {
public int maxSatisfied(int[] customers, int[] grumpy, int X) {
int winsum = 0;
int rightsum = 0;
int len = customers.length;
//右区间的值
for (int i = X; i < len; ++i) {
if (grumpy[i] == 0) {
rightsum += customers[i];
}
}
//窗口的值
for (int i = 0; i < X; ++i) {
winsum += customers[i];
}
int leftsum = 0;
//窗口左边缘
int left = 1;
//窗口右边缘
int right = X;
int maxcustomer = winsum + leftsum + rightsum;
while (right < customers.length) {
//重新计算左区间的值,也可以用 customer 值和 grumpy 值相乘获得
if (grumpy[left-1] == 0) {
leftsum += customers[left-1];
}
//重新计算右区间值
if (grumpy[right] == 0) {
rightsum -= customers[right];
}
//窗口值
winsum = winsum - customers[left-1] + customers[right];
//保留最大值
maxcustomer = Math.max(maxcustomer,winsum+leftsum+rightsum);
//移动窗口
left++;
right++;
}
return maxcustomer;
}
}