mirror of
https://github.com/chefyuan/algorithm-base.git
synced 2024-12-29 05:46:17 +00:00
7dd5ce1f3d
为数组篇文件夹下的代码增加了python语言版本
3.8 KiB
3.8 KiB
如果阅读时,发现错误,或者动画不可以显示的问题可以添加我微信好友 tan45du_one ,备注 github + 题目 + 问题 向我反馈
感谢支持,该仓库会一直维护,希望对各位有一丢丢帮助。
另外希望手机阅读的同学可以来我的 公众号:袁厨的算法小屋 两个平台同步,想要和题友一起刷题,互相监督的同学,可以在我的小屋点击刷题小队进入。
209. 长度最小的子数组
我们下面再看一种新类型的双指针,也就是我们大家熟知的滑动窗口。这也是我们做题时经常用到的,下面我们来看一下题目吧!
题目描述
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
题目解析
滑动窗口:就是通过不断调节子数组的起始位置和终止位置,进而得到我们想要的结果,滑动窗口也是双指针的一种。
下面我们来看一下这道题目的做题思路,其实原理也很简单,我们创建两个指针,一个指针负责在前面探路,并不断累加遍历过的元素的值,当和大于等于我们的目标值时,后指针开始进行移动,判断去除当前值时,是否仍能满足我们的要求,直到不满足时后指针 停止,前面指针继续移动,直到遍历结束。是不是很简单呀。前指针和后指针之间的元素个数就是我们的滑动窗口的窗口大小。见下图
好啦,该题的解题思路我们已经了解啦,下面我们看一下,代码的运行过程吧。
题目代码
Java Code:
class Solution {
public int minSubArrayLen(int s, int[] nums) {
int len = nums.length;
int windowlen = Integer.MAX_VALUE;
int i = 0;
int sum = 0;
for (int j = 0; j < len; ++j) {
sum += nums[j];
while (sum >= s) {
windowlen = Math.min (windowlen, j - i + 1);
sum -= nums[i];
i++;
}
}
return windowlen == Integer.MAX_VALUE ? 0 : windowlen;
}
}
C++ Code:
class Solution {
public:
int minSubArrayLen(int t, vector<int>& nums) {
int n = nums.size();
int i = 0, sum = 0, winlen = INT_MAX;
for(int j = 0; j < n; ++j){
sum += nums[j];
while(sum >= t){
winlen = min(winlen, j - i + 1);
sum -= nums[i++];
}
}
return winlen == INT_MAX? 0: winlen;
}
};
Python3 Code:
from typing import List
import sys
class Solution:
def minSubArrayLen(self, s: int, nums: List[int])->int:
leng = len(nums)
windowlen = sys.maxsize
i = 0
sum = 0
for j in range(0, leng):
sum += nums[j]
while sum >= s:
windowlen = min(windowlen, j - i + 1)
sum -= nums[i]
i += 1
if windowlen == sys.maxsize:
return 0
else:
return windowlen