7.6 KiB
如果阅读时,发现错误,或者动画不可以显示的问题可以添加我微信好友 tan45du_one ,备注 github + 题目 + 问题 向我反馈
感谢支持,该仓库会一直维护,希望对各位有一丢丢帮助。
另外希望手机阅读的同学可以来我的 公众号:袁厨的算法小屋 两个平台同步,想要和题友一起刷题,互相监督的同学,可以在我的小屋点击刷题小队进入。
1052. 爱生气的书店老板
题目描述
今天,书店老板有一家店打算试营业 customers.length 分钟。每分钟都有一些顾客(customers[i])会进入书店,所有这些顾客都会在那一分钟结束后离开。
在某些时候,书店老板会生气。 如果书店老板在第 i 分钟生气,那么 grumpy[i] = 1,否则 grumpy[i] = 0。 当书店老板生气时,那一分钟的顾客就会不满意,不生气则他们是满意的。
书店老板知道一个秘密技巧,能抑制自己的情绪,可以让自己连续 X 分钟不生气,但却只能使用一次。
请你返回这一天营业下来,最多有多少客户能够感到满意的数量。
示例:
输入:customers = [1,0,1,2,1,1,7,5], grumpy = [0,1,0,1,0,1,0,1], X = 3 输出:16
解释: 书店老板在最后 3 分钟保持冷静。 感到满意的最大客户数量 = 1 + 1 + 1 + 1 + 7 + 5 = 16.
该题目思想就是,我们将 customer 数组的值分为三部分, leftsum, winsum, rightsum。我们题目的返回值则是三部分的最大和。
注意这里的最大和,我们是怎么计算的。
winsum 是窗口内的所有值,不管 grumpy[i] 的值是 0 还是 1,窗口的大小,就对应 K 的值,也就是老板的技能发动时间,该时间段内,老板不会生气,所以为所有的值。
leftsum 是窗口左边区间的值,此时我们不能为所有值,只能是 grumpy[i] == 0 时才可以加入,因为此时不是技能发动期,老板只有在 grumpy[i] == 0 时,才不会生气。
rightsum 是窗口右区间的值,和左区间加和方式一样。那么我们易懂一下窗口,我们的 win 值和 leftsum 值,rightsum 值是怎么变化的呢?
见下图
我们此时移动了窗口,
则左半区间范围扩大,但是 leftsum 的值没有变,这时因为新加入的值,所对应的 grumpy[i] == 1,所以其值不会发生改变,因为我们只统计 grumpy[i] == 0 的值,
右半区间范围减少,rightsum 值也减少,因为右半区间减小的值,其对应的 grumpy[i] == 0,所以 rightsum -= grumpy[i]。
winsum 也会发生变化, winsum 需要加上新加入窗口的值,减去刚离开窗口的值, 也就是 customer[left-1],left 代表窗口左边缘。
好啦,知道怎么做了,我们直接开整吧。
Java Code:
class Solution {
public int maxSatisfied(int[] customers, int[] grumpy, int X) {
int winsum = 0;
int rightsum = 0;
int len = customers.length;
//右区间的值
for (int i = X; i < len; ++i) {
if (grumpy[i] == 0) {
rightsum += customers[i];
}
}
//窗口的值
for (int i = 0; i < X; ++i) {
winsum += customers[i];
}
int leftsum = 0;
//窗口左边缘
int left = 1;
//窗口右边缘
int right = X;
int maxcustomer = winsum + leftsum + rightsum;
while (right < customers.length) {
//重新计算左区间的值,也可以用 customer 值和 grumpy 值相乘获得
if (grumpy[left-1] == 0) {
leftsum += customers[left-1];
}
//重新计算右区间值
if (grumpy[right] == 0) {
rightsum -= customers[right];
}
//窗口值
winsum = winsum - customers[left-1] + customers[right];
//保留最大值
maxcustomer = Math.max(maxcustomer,winsum+leftsum+rightsum);
//移动窗口
left++;
right++;
}
return maxcustomer;
}
}
Python3 Code:
class Solution:
def maxSatisfied(self, customers: List[int], grumpy: List[int], X: int) -> int:
t = ans = sum(customers[:X]) + sum(map(lambda x: customers[X+x[0]] if x[1] == 0 else 0, enumerate(grumpy[X:])))
for j in range(X, len(customers)):
t += customers[j] * grumpy[j] - customers[j-X] * grumpy[j-X]
ans = max(ans, t)
return ans
Swift Code
class Solution {
func maxSatisfied(_ customers: [Int], _ grumpy: [Int], _ minutes: Int) -> Int {
let len = customers.count
var winSum = 0, rightSum = 0, leftSum = 0
// 右区间的值
for i in minutes..<len {
if grumpy[i] == 0 {
rightSum += customers[i]
}
}
// 窗口的值
for i in 0..<minutes {
winSum += customers[i]
}
var maxCustomer = winSum + leftSum + rightSum
// 窗口左边缘
var left = 1, right = minutes
while right < len {
// 重新计算左区间的值,也可以用 customer 值和 grumpy 值相乘获得
if grumpy[left - 1] == 0 {
leftSum += customers[left - 1]
}
// 重新计算右区间值
if grumpy[right] == 0 {
rightSum -= customers[right]
}
// 窗口值
winSum = winSum - customers[left - 1] + customers[right]
maxCustomer = max(maxCustomer, winSum + leftSum + rightSum) // 保留最大值
// 移动窗口
left += 1
right += 1
}
return maxCustomer
}
}
C++ Code
class Solution
{
public:
int maxSatisfied(vector<int> &customers, vector<int> &grumpy, int minutes)
{
for_each(grumpy.begin(), grumpy.end(), [](auto &g){ g = !g; });
vector<int> osum(customers.size(), 0);
//先初始化第一个元素
osum[0] = customers[0] * grumpy[0];
//计算前缀和, osum是origin sum
for (int i = 1; i < osum.size(); i++)
{
osum[i] = osum[i - 1] + customers[i] * grumpy[i];
}
//计算连续minutes的和
vector<int> msum(customers.size() - minutes + 1, 0);
for (int i = 0; i < minutes; i++)
{
msum[0] += customers[i];
}
for (int i = 1; i < msum.size(); i++)
{
msum[i] = msum[i - 1] - customers[i - 1] + customers[i + minutes - 1];
}
//分成三段计算
int result = 0;
for (int i = 0; i < msum.size(); i++)
{
//左 中 右
//注意左的边界条件, 可以使用边界测试
int sum = ((i - 1 >= 0) ? osum[i - 1] : 0) + msum[i] + osum[osum.size() - 1] - osum[i + minutes - 1];
if (sum > result)
result = sum;
}
return result;
}
};