mirror of
https://github.com/gopl-zh/gopl-zh.github.com.git
synced 2024-12-27 07:16:22 +00:00
eda4800a71
Fixes #112
229 lines
10 KiB
Markdown
229 lines
10 KiB
Markdown
## 12.3. Display遞歸打印
|
||
|
||
接下來,讓我們看看如何改善聚合數據類型的顯示。我們併不想完全剋隆一個fmt.Sprint函數,我們隻是像構建一個用於調式用的Display函數,給定一個聚合類型x,打印這個值對應的完整的結構,同時記録每個發現的每個元素的路徑。讓我們從一個例子開始。
|
||
|
||
```Go
|
||
e, _ := eval.Parse("sqrt(A / pi)")
|
||
Display("e", e)
|
||
```
|
||
|
||
在上面的調用中,傳入Display函數的參數是在7.9節一個表達式求值函數返迴的語法樹。Display函數的輸出如下:
|
||
|
||
```Go
|
||
Display e (eval.call):
|
||
e.fn = "sqrt"
|
||
e.args[0].type = eval.binary
|
||
e.args[0].value.op = 47
|
||
e.args[0].value.x.type = eval.Var
|
||
e.args[0].value.x.value = "A"
|
||
e.args[0].value.y.type = eval.Var
|
||
e.args[0].value.y.value = "pi"
|
||
```
|
||
|
||
在可能的情況下,你應該避免在一個包中暴露和反射相關的接口。我們將定義一個未導出的display函數用於遞歸處理工作,導出的是Display函數,它隻是display函數簡單的包裝以接受interface{}類型的參數:
|
||
|
||
```Go
|
||
gopl.io/ch12/display
|
||
|
||
func Display(name string, x interface{}) {
|
||
fmt.Printf("Display %s (%T):\n", name, x)
|
||
display(name, reflect.ValueOf(x))
|
||
}
|
||
```
|
||
|
||
在display函數中,我們使用了前面定義的打印基礎類型——基本類型、函數和chan等——元素值的formatAtom函數,但是我們會使用reflect.Value的方法來遞歸顯示聚合類型的每一個成員或元素。在遞歸下降過程中,path字符串,從最開始傳入的起始值(這里是“e”),將逐步增長以表示如何達到當前值(例如“e.args[0].value”)。
|
||
|
||
因爲我們不再模擬fmt.Sprint函數,我們將直接使用fmt包來簡化我們的例子實現。
|
||
|
||
```Go
|
||
func display(path string, v reflect.Value) {
|
||
switch v.Kind() {
|
||
case reflect.Invalid:
|
||
fmt.Printf("%s = invalid\n", path)
|
||
case reflect.Slice, reflect.Array:
|
||
for i := 0; i < v.Len(); i++ {
|
||
display(fmt.Sprintf("%s[%d]", path, i), v.Index(i))
|
||
}
|
||
case reflect.Struct:
|
||
for i := 0; i < v.NumField(); i++ {
|
||
fieldPath := fmt.Sprintf("%s.%s", path, v.Type().Field(i).Name)
|
||
display(fieldPath, v.Field(i))
|
||
}
|
||
case reflect.Map:
|
||
for _, key := range v.MapKeys() {
|
||
display(fmt.Sprintf("%s[%s]", path,
|
||
formatAtom(key)), v.MapIndex(key))
|
||
}
|
||
case reflect.Ptr:
|
||
if v.IsNil() {
|
||
fmt.Printf("%s = nil\n", path)
|
||
} else {
|
||
display(fmt.Sprintf("(*%s)", path), v.Elem())
|
||
}
|
||
case reflect.Interface:
|
||
if v.IsNil() {
|
||
fmt.Printf("%s = nil\n", path)
|
||
} else {
|
||
fmt.Printf("%s.type = %s\n", path, v.Elem().Type())
|
||
display(path+".value", v.Elem())
|
||
}
|
||
default: // basic types, channels, funcs
|
||
fmt.Printf("%s = %s\n", path, formatAtom(v))
|
||
}
|
||
}
|
||
```
|
||
|
||
讓我們針對不同類型分别討論。
|
||
|
||
**Slice和數組:** 兩種的處理邏輯是一樣的。Len方法返迴slice或數組值中的元素個數,Index(i)活動索引i對應的元素,返迴的也是一個reflect.Value類型的值;如果索引i超出范圍的話將導致panic異常,這些行爲和數組或slice類型內建的len(a)和a[i]等操作類似。display針對序列中的每個元素遞歸調用自身處理,我們通過在遞歸處理時向path附加“[i]”來表示訪問路徑。
|
||
|
||
雖然reflect.Value類型帶有很多方法,但是隻有少數的方法對任意值都是可以安全調用的。例如,Index方法隻能對Slice、數組或字符串類型的值調用,其它類型如果調用將導致panic異常。
|
||
|
||
**結構體:** NumField方法報告結構體中成員的數量,Field(i)以reflect.Value類型返迴第i個成員的值。成員列表包含了匿名成員在內的全部成員。通過在path添加“.f”來表示成員路徑,我們必鬚獲得結構體對應的reflect.Type類型信息,包含結構體類型和第i個成員的名字。
|
||
|
||
**Maps:** MapKeys方法返迴一個reflect.Value類型的slice,每一個都對應map的可以。和往常一樣,遍歷map時順序是隨機的。MapIndex(key)返迴map中key對應的value。我們向path添加“[key]”來表示訪問路徑。(我們這里有一個未完成的工作。其實map的key的類型併不局限於formatAtom能完美處理的類型;數組、結構體和接口都可以作爲map的key。針對這種類型,完善key的顯示信息是練習12.1的任務。)
|
||
|
||
**指針:** Elem方法返迴指針指向的變量,還是reflect.Value類型。技術指針是nil,這個操作也是安全的,在這種情況下指針是Invalid無效類型,但是我們可以用IsNil方法來顯式地測試一個空指針,這樣我們可以打印更合適的信息。我們在path前面添加“*”,併用括弧包含以避免歧義。
|
||
|
||
**接口:** 再一次,我們使用IsNil方法來測試接口是否是nil,如果不是,我們可以調用v.Elem()來獲取接口對應的動態值,併且打印對應的類型和值。
|
||
|
||
現在我們的Display函數總算完工了,讓我們看看它的表現吧。下面的Movie類型是在4.5節的電影類型上演變來的:
|
||
|
||
```Go
|
||
type Movie struct {
|
||
Title, Subtitle string
|
||
Year int
|
||
Color bool
|
||
Actor map[string]string
|
||
Oscars []string
|
||
Sequel *string
|
||
}
|
||
```
|
||
|
||
讓我們聲明一個該類型的變量,然後看看Display函數如何顯示它:
|
||
|
||
```Go
|
||
strangelove := Movie{
|
||
Title: "Dr. Strangelove",
|
||
Subtitle: "How I Learned to Stop Worrying and Love the Bomb",
|
||
Year: 1964,
|
||
Color: false,
|
||
Actor: map[string]string{
|
||
"Dr. Strangelove": "Peter Sellers",
|
||
"Grp. Capt. Lionel Mandrake": "Peter Sellers",
|
||
"Pres. Merkin Muffley": "Peter Sellers",
|
||
"Gen. Buck Turgidson": "George C. Scott",
|
||
"Brig. Gen. Jack D. Ripper": "Sterling Hayden",
|
||
`Maj. T.J. "King" Kong`: "Slim Pickens",
|
||
},
|
||
|
||
Oscars: []string{
|
||
"Best Actor (Nomin.)",
|
||
"Best Adapted Screenplay (Nomin.)",
|
||
"Best Director (Nomin.)",
|
||
"Best Picture (Nomin.)",
|
||
},
|
||
}
|
||
```
|
||
|
||
Display("strangelove", strangelove)調用將顯示(strangelove電影對應的中文名是《奇愛博士》):
|
||
|
||
```Go
|
||
Display strangelove (display.Movie):
|
||
strangelove.Title = "Dr. Strangelove"
|
||
strangelove.Subtitle = "How I Learned to Stop Worrying and Love the Bomb"
|
||
strangelove.Year = 1964
|
||
strangelove.Color = false
|
||
strangelove.Actor["Gen. Buck Turgidson"] = "George C. Scott"
|
||
strangelove.Actor["Brig. Gen. Jack D. Ripper"] = "Sterling Hayden"
|
||
strangelove.Actor["Maj. T.J. \"King\" Kong"] = "Slim Pickens"
|
||
strangelove.Actor["Dr. Strangelove"] = "Peter Sellers"
|
||
strangelove.Actor["Grp. Capt. Lionel Mandrake"] = "Peter Sellers"
|
||
strangelove.Actor["Pres. Merkin Muffley"] = "Peter Sellers"
|
||
strangelove.Oscars[0] = "Best Actor (Nomin.)"
|
||
strangelove.Oscars[1] = "Best Adapted Screenplay (Nomin.)"
|
||
strangelove.Oscars[2] = "Best Director (Nomin.)"
|
||
strangelove.Oscars[3] = "Best Picture (Nomin.)"
|
||
strangelove.Sequel = nil
|
||
```
|
||
|
||
我們也可以使用Display函數來顯示標準庫中類型的內部結構,例如`*os.File`類型:
|
||
|
||
```Go
|
||
Display("os.Stderr", os.Stderr)
|
||
// Output:
|
||
// Display os.Stderr (*os.File):
|
||
// (*(*os.Stderr).file).fd = 2
|
||
// (*(*os.Stderr).file).name = "/dev/stderr"
|
||
// (*(*os.Stderr).file).nepipe = 0
|
||
```
|
||
|
||
要註意的是,結構體中未導出的成員對反射也是可見的。需要當心的是這個例子的輸出在不同操作繫統上可能是不同的,併且隨着標準庫的發展也可能導致結果不同。(這也是將這些成員定義爲私有成員的原因之一!)我們深圳可以用Display函數來顯示reflect.Value,來査看`*os.File`類型的內部表示方式。`Display("rV", reflect.ValueOf(os.Stderr))`調用的輸出如下,當然不同環境得到的結果可能有差異:
|
||
|
||
```Go
|
||
Display rV (reflect.Value):
|
||
(*rV.typ).size = 8
|
||
(*rV.typ).hash = 871609668
|
||
(*rV.typ).align = 8
|
||
(*rV.typ).fieldAlign = 8
|
||
(*rV.typ).kind = 22
|
||
(*(*rV.typ).string) = "*os.File"
|
||
|
||
(*(*(*rV.typ).uncommonType).methods[0].name) = "Chdir"
|
||
(*(*(*(*rV.typ).uncommonType).methods[0].mtyp).string) = "func() error"
|
||
(*(*(*(*rV.typ).uncommonType).methods[0].typ).string) = "func(*os.File) error"
|
||
...
|
||
```
|
||
|
||
觀察下面兩個例子的區别:
|
||
|
||
```Go
|
||
var i interface{} = 3
|
||
|
||
Display("i", i)
|
||
// Output:
|
||
// Display i (int):
|
||
// i = 3
|
||
|
||
Display("&i", &i)
|
||
// Output:
|
||
// Display &i (*interface {}):
|
||
// (*&i).type = int
|
||
// (*&i).value = 3
|
||
```
|
||
|
||
在第一個例子中,Display函數將調用reflect.ValueOf(i),它返迴一個Int類型的值。正如我們在12.2節中提到的,reflect.ValueOf總是返迴一個值的具體類型,因爲它是從一個接口值提取的內容。
|
||
|
||
在第二個例子中,Display函數調用的是reflect.ValueOf(&i),它返迴一個指向i的指針,對應Ptr類型。在switch的Ptr分支中,通過調用Elem來返迴這個值,返迴一個Value來表示i,對應Interface類型。一個間接獲得的Value,就像這一個,可能代表任意類型的值,包括接口類型。內部的display函數遞歸調用自身,這次它將打印接口的動態類型和值。
|
||
|
||
目前的實現,Display如果顯示一個帶環的數據結構將會陷入死循環,例如首位項鏈的鏈表:
|
||
|
||
```Go
|
||
// a struct that points to itself
|
||
type Cycle struct{ Value int; Tail *Cycle }
|
||
var c Cycle
|
||
c = Cycle{42, &c}
|
||
Display("c", c)
|
||
```
|
||
|
||
Display會永遠不停地進行深度遞歸打印:
|
||
|
||
```Go
|
||
Display c (display.Cycle):
|
||
c.Value = 42
|
||
(*c.Tail).Value = 42
|
||
(*(*c.Tail).Tail).Value = 42
|
||
(*(*(*c.Tail).Tail).Tail).Value = 42
|
||
...ad infinitum...
|
||
```
|
||
|
||
許多Go語言程序都包含了一些循環的數據結果。Display支持這類帶環的數據結構是比較棘手的,需要增加一個額外的記録訪問的路徑;代價是昂貴的。一般的解決方案是采用不安全的語言特性,我們將在13.3節看到具體的解決方案。
|
||
|
||
帶環的數據結構很少會對fmt.Sprint函數造成問題,因爲它很少嚐試打印完整的數據結構。例如,當它遇到一個指針的時候,它隻是簡單第打印指針的數值。雖然,在打印包含自身的slice或map時可能遇到睏難,但是不保證處理這種是罕見情況卻可以避免額外的麻煩。
|
||
|
||
**練習 12.1:** 擴展Displayhans,以便它可以顯示包含以結構體或數組作爲map的key類型的值。
|
||
|
||
**練習 12.2:** 增強display函數的穩健性,通過記録邊界的步數來確保在超出一定限製前放棄遞歸。(在13.3節,我們會看到另一種探測數據結構是否存在環的技術。)
|
||
|
||
|