gopl-zh.github.com/ch3/ch3-03.md
2015-12-27 15:52:12 +08:00

101 lines
4.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

## 3.3. 複數
Go語言提供了兩種精度的複數類型complex64和complex128分别對應float32和float64兩種浮點數精度。內置的complex函數用於構建複數內建的real和imag函數分别返迴複數的實部和虛部
```Go
var x complex128 = complex(1, 2) // 1+2i
var y complex128 = complex(3, 4) // 3+4i
fmt.Println(x*y) // "(-5+10i)"
fmt.Println(real(x*y)) // "-5"
fmt.Println(imag(x*y)) // "10"
```
如果一個浮點數面值或一個十進製整數面值後面跟着一個i例如3.141592i或2i它將構成一個複數的虛部複數的實部是0
```Go
fmt.Println(1i * 1i) // "(-1+0i)", i^2 = -1
```
在常量算術規則下一個複數常量可以加到另一個普通數值常量整數或浮點數、實部或虛部我們可以用自然的方式書寫複數就像1+2i或與之等價的寫法2i+1。上面x和y的聲明語句還可以簡化
```Go
x := 1 + 2i
y := 3 + 4i
```
複數也可以用==和!=進行相等比較。隻有兩個複數的實部和虛部都相等的時候它們才是相等的(譯註:浮點數的相等比較是危險的,需要特别小心處理精度問題)。
math/cmplx包提供了複數處理的許多函數例如求複數的平方根函數和求冪函數。
```Go
fmt.Println(cmplx.Sqrt(-1)) // "(0+1i)"
```
下面的程序使用complex128複數算法來生成一個Mandelbrot圖像。
```Go
gopl.io/ch3/mandelbrot
// Mandelbrot emits a PNG image of the Mandelbrot fractal.
package main
import (
"image"
"image/color"
"image/png"
"math/cmplx"
"os"
)
func main() {
const (
xmin, ymin, xmax, ymax = -2, -2, +2, +2
width, height = 1024, 1024
)
img := image.NewRGBA(image.Rect(0, 0, width, height))
for py := 0; py < height; py++ {
y := float64(py)/height*(ymax-ymin) + ymin
for px := 0; px < width; px++ {
x := float64(px)/width*(xmax-xmin) + xmin
z := complex(x, y)
// Image point (px, py) represents complex value z.
img.Set(px, py, mandelbrot(z))
}
}
png.Encode(os.Stdout, img) // NOTE: ignoring errors
}
func mandelbrot(z complex128) color.Color {
const iterations = 200
const contrast = 15
var v complex128
for n := uint8(0); n < iterations; n++ {
v = v*v + z
if cmplx.Abs(v) > 2 {
return color.Gray{255 - contrast*n}
}
}
return color.Black
}
```
用於遍歷1024x1024圖像每個點的兩個嵌套的循環對應-2到+2區間的複數平面。程序反複測試每個點對應複數值平方值加一個增量值對應的點是否超出半徑爲2的圓。如果超過了通過根據預設置的逃逸迭代次數對應的灰度顔色來代替。如果不是那麽該點屬於Mandelbrot集合使用黑色顔色標記。最終程序將生成的PNG格式分形圖像圖像輸出到標準輸出如圖3.3所示。
![](../images/ch3-03.png)
**練習 3.5** 實現一個綵色的Mandelbrot圖像使用image.NewRGBA創建圖像使用color.RGBA或color.YCbCr生成顔色。
**練習 3.6** 陞采樣技術可以降低每個像素對計算顔色值和平均值的影響。簡單的方法是將每個像素分層四個子像素,實現它。
**練習 3.7** 另一個生成分形圖像的方式是使用牛頓法來求解一個複數方程,例如$$z^4-1=0$$。每個起點到四個根的迭代次數對應陰影的灰度。方程根對應的點用顔色表示。
**練習 3.8** 通過提高精度來生成更多級别的分形。使用四種不同精度類型的數字實現相同的分形complex64、complex128、big.Float和big.Rat。後面兩種類型在math/big包聲明。Float是有指定限精度的浮點數Rat是無效精度的有理數。它們間的性能和內存使用對比如何當渲染圖可見時縮放的級别是多少
**練習 3.9** 編寫一個web服務器用於給客戶端生成分形的圖像。運行客戶端用過HTTP參數參數指定x,y和zoom參數。