Correct a terminology mistake,
which is revealed by Prof. Deng.
This commit is contained in:
parent
97d016f37a
commit
2928c899ac
@ -30,7 +30,7 @@ comments: true
|
|||||||
|
|
||||||
### 理论估算
|
### 理论估算
|
||||||
|
|
||||||
既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐进复杂度分析 Asymptotic Complexity Analysis」。
|
既然实际测试具有很大的局限性,那么我们是否可以仅通过一些计算,就获知算法的效率水平呢?答案是肯定的,我们将此估算方法称为「复杂度分析 Complexity Analysis」或「渐近复杂度分析 Asymptotic Complexity Analysis」。
|
||||||
|
|
||||||
**复杂度分析评估随着输入数据量的增长,算法的运行时间和占用空间的增长趋势** 。根据时间和空间两方面,复杂度可分为「时间复杂度 Time Complexity」和「空间复杂度 Space Complexity」。
|
**复杂度分析评估随着输入数据量的增长,算法的运行时间和占用空间的增长趋势** 。根据时间和空间两方面,复杂度可分为「时间复杂度 Time Complexity」和「空间复杂度 Space Complexity」。
|
||||||
|
|
||||||
|
@ -13,8 +13,8 @@ comments: true
|
|||||||
### 时间复杂度
|
### 时间复杂度
|
||||||
|
|
||||||
- 「时间复杂度」统计算法运行时间随着数据量变大时的增长趋势,可以有效评估算法效率,但在某些情况下可能失效,比如在输入数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣性。
|
- 「时间复杂度」统计算法运行时间随着数据量变大时的增长趋势,可以有效评估算法效率,但在某些情况下可能失效,比如在输入数据量较小或时间复杂度相同时,无法精确对比算法效率的优劣性。
|
||||||
- 「最差时间复杂度」使用大 $O$ 符号表示,即函数渐进上界,其反映当 $n$ 趋于正无穷时,$T(n)$ 处于何种增长级别。
|
- 「最差时间复杂度」使用大 $O$ 符号表示,即函数渐近上界,其反映当 $n$ 趋于正无穷时,$T(n)$ 处于何种增长级别。
|
||||||
- 推算时间复杂度分为两步,首先统计计算操作数量,再判断渐进上界。
|
- 推算时间复杂度分为两步,首先统计计算操作数量,再判断渐近上界。
|
||||||
- 常见时间复杂度从小到大排列有 $O(1)$ , $O(\log n)$ , $O(n)$ , $O(n \log n)$ , $O(n^2)$ , $O(2^n)$ , $O(n!)$ 。
|
- 常见时间复杂度从小到大排列有 $O(1)$ , $O(\log n)$ , $O(n)$ , $O(n \log n)$ , $O(n^2)$ , $O(2^n)$ , $O(n!)$ 。
|
||||||
- 某些算法的时间复杂度不是恒定的,而是与输入数据的分布有关。时间复杂度分为「最差时间复杂度」和「最佳时间复杂度」,后者几乎不用,因为输入数据需要满足苛刻的条件才能达到最佳情况。
|
- 某些算法的时间复杂度不是恒定的,而是与输入数据的分布有关。时间复杂度分为「最差时间复杂度」和「最佳时间复杂度」,后者几乎不用,因为输入数据需要满足苛刻的条件才能达到最佳情况。
|
||||||
- 「平均时间复杂度」可以反映在随机数据输入下的算法效率,最贴合实际使用情况下的算法性能。计算平均时间复杂度需要统计输入数据的分布,以及综合后的数学期望。
|
- 「平均时间复杂度」可以反映在随机数据输入下的算法效率,最贴合实际使用情况下的算法性能。计算平均时间复杂度需要统计输入数据的分布,以及综合后的数学期望。
|
||||||
|
@ -203,7 +203,7 @@ $$
|
|||||||
|
|
||||||
**时间复杂度也存在一定的局限性。** 比如,虽然算法 `A` 和 `C` 的时间复杂度相同,但是实际的运行时间有非常大的差别。再比如,虽然算法 `B` 比 `C` 的时间复杂度要更高,但在输入数据大小 $n$ 比较小时,算法 `B` 是要明显优于算法 `C` 的。即使存在这些问题,计算复杂度仍然是评判算法效率的最有效、最常用方法。
|
**时间复杂度也存在一定的局限性。** 比如,虽然算法 `A` 和 `C` 的时间复杂度相同,但是实际的运行时间有非常大的差别。再比如,虽然算法 `B` 比 `C` 的时间复杂度要更高,但在输入数据大小 $n$ 比较小时,算法 `B` 是要明显优于算法 `C` 的。即使存在这些问题,计算复杂度仍然是评判算法效率的最有效、最常用方法。
|
||||||
|
|
||||||
## 函数渐进上界
|
## 函数渐近上界
|
||||||
|
|
||||||
设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为
|
设算法「计算操作数量」为 $T(n)$ ,其是一个关于输入数据大小 $n$ 的函数。例如,以下算法的操作数量为
|
||||||
|
|
||||||
@ -284,34 +284,34 @@ $$
|
|||||||
|
|
||||||
$T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。
|
$T(n)$ 是个一次函数,说明时间增长趋势是线性的,因此易得时间复杂度是线性阶。
|
||||||
|
|
||||||
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」,代表函数 $T(n)$ 的「渐进上界 asymptotic upper bound」。
|
我们将线性阶的时间复杂度记为 $O(n)$ ,这个数学符号被称为「大 $O$ 记号 Big-$O$ Notation」,代表函数 $T(n)$ 的「渐近上界 asymptotic upper bound」。
|
||||||
|
|
||||||
我们要推算时间复杂度,本质上是在计算「操作数量函数 $T(n)$ 」的渐进上界。下面我们先来看看函数渐进上界的数学定义。
|
我们要推算时间复杂度,本质上是在计算「操作数量函数 $T(n)$ 」的渐近上界。下面我们先来看看函数渐近上界的数学定义。
|
||||||
|
|
||||||
!!! abstract "函数渐进上界"
|
!!! abstract "函数渐近上界"
|
||||||
|
|
||||||
若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有
|
若存在正实数 $c$ 和实数 $n_0$ ,使得对于所有的 $n > n_0$ ,均有
|
||||||
$$
|
$$
|
||||||
T(n) \leq c \cdot f(n)
|
T(n) \leq c \cdot f(n)
|
||||||
$$
|
$$
|
||||||
则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐进上界,记为
|
则可认为 $f(n)$ 给出了 $T(n)$ 的一个渐近上界,记为
|
||||||
$$
|
$$
|
||||||
T(n) = O(f(n))
|
T(n) = O(f(n))
|
||||||
$$
|
$$
|
||||||
|
|
||||||
![asymptotic_upper_bound](time_complexity.assets/asymptotic_upper_bound.png)
|
![asymptotic_upper_bound](time_complexity.assets/asymptotic_upper_bound.png)
|
||||||
|
|
||||||
<p align="center"> Fig. 函数的渐进上界 </p>
|
<p align="center"> Fig. 函数的渐近上界 </p>
|
||||||
|
|
||||||
本质上看,计算渐进上界就是在找一个函数 $f(n)$ ,**使得在 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别(仅相差一个常数项 $c$ 的倍数)**。
|
本质上看,计算渐近上界就是在找一个函数 $f(n)$ ,**使得在 $n$ 趋向于无穷大时,$T(n)$ 和 $f(n)$ 处于相同的增长级别(仅相差一个常数项 $c$ 的倍数)**。
|
||||||
|
|
||||||
!!! tip
|
!!! tip
|
||||||
|
|
||||||
渐进上界的数学味儿有点重,如果你感觉没有完全理解,无需担心,因为在实际使用中我们只需要会推算即可,数学意义可以慢慢领悟。
|
渐近上界的数学味儿有点重,如果你感觉没有完全理解,无需担心,因为在实际使用中我们只需要会推算即可,数学意义可以慢慢领悟。
|
||||||
|
|
||||||
## 推算方法
|
## 推算方法
|
||||||
|
|
||||||
推算出 $f(n)$ 后,我们就得到时间复杂度 $O(f(n))$ 。那么,如何来确定渐进上界 $f(n)$ 呢?总体分为两步,首先「统计操作数量」,然后「判断渐进上界」。
|
推算出 $f(n)$ 后,我们就得到时间复杂度 $O(f(n))$ 。那么,如何来确定渐近上界 $f(n)$ 呢?总体分为两步,首先「统计操作数量」,然后「判断渐近上界」。
|
||||||
|
|
||||||
### 1. 统计操作数量
|
### 1. 统计操作数量
|
||||||
|
|
||||||
@ -416,7 +416,7 @@ $$
|
|||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
### 2. 判断渐进上界
|
### 2. 判断渐近上界
|
||||||
|
|
||||||
**时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将处于主导作用,其它项的影响都可以被忽略。
|
**时间复杂度由多项式 $T(n)$ 中最高阶的项来决定**。这是因为在 $n$ 趋于无穷大时,最高阶的项将处于主导作用,其它项的影响都可以被忽略。
|
||||||
|
|
||||||
@ -1330,7 +1330,7 @@ $$
|
|||||||
- 当 `nums = [?, ?, ..., 1]`,即当末尾元素是 $1$ 时,则需完整遍历数组,此时达到 **最差时间复杂度 $O(n)$** ;
|
- 当 `nums = [?, ?, ..., 1]`,即当末尾元素是 $1$ 时,则需完整遍历数组,此时达到 **最差时间复杂度 $O(n)$** ;
|
||||||
- 当 `nums = [1, ?, ?, ...]` ,即当首个数字为 $1$ 时,无论数组多长都不需要继续遍历,此时达到 **最佳时间复杂度 $\Omega(1)$** ;
|
- 当 `nums = [1, ?, ?, ...]` ,即当首个数字为 $1$ 时,无论数组多长都不需要继续遍历,此时达到 **最佳时间复杂度 $\Omega(1)$** ;
|
||||||
|
|
||||||
「函数渐进上界」使用大 $O$ 记号表示,代表「最差时间复杂度」。与之对应,「函数渐进下界」用 $\Omega$ 记号(Omega Notation)来表示,代表「最佳时间复杂度」。
|
「函数渐近上界」使用大 $O$ 记号表示,代表「最差时间复杂度」。与之对应,「函数渐近下界」用 $\Omega$ 记号(Omega Notation)来表示,代表「最佳时间复杂度」。
|
||||||
|
|
||||||
=== "Java"
|
=== "Java"
|
||||||
|
|
||||||
|
@ -44,7 +44,7 @@ comments: true
|
|||||||
|
|
||||||
首先介绍数据结构与算法的评价维度、算法效率的评估方法,引出了计算复杂度概念。
|
首先介绍数据结构与算法的评价维度、算法效率的评估方法,引出了计算复杂度概念。
|
||||||
|
|
||||||
接下来,从 **函数渐进上界** 入手,分别介绍了 **时间复杂度** 和 **空间复杂度** ,包括推算方法、常见类型、示例等。同时,剖析了 **最差、最佳、平均** 时间复杂度的联系与区别。
|
接下来,从 **函数渐近上界** 入手,分别介绍了 **时间复杂度** 和 **空间复杂度** ,包括推算方法、常见类型、示例等。同时,剖析了 **最差、最佳、平均** 时间复杂度的联系与区别。
|
||||||
|
|
||||||
### 数据结构
|
### 数据结构
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user