hello-algo/docs/chapter_tree/binary_search_tree.md
2022-11-22 17:47:26 +08:00

9.3 KiB
Raw Blame History

comments
true

二叉搜索树

「二叉搜索树 Binary Search Tree」满足以下条件

  1. 对于根结点,左子树中所有结点的值 < 根结点的值 < 右子树中所有结点的值;
  2. 任意结点的左子树和右子树也是二叉搜索树,即也满足条件 1.

binary_search_tree

二叉搜索树的操作

查找结点

给定目标结点值 num ,可以根据二叉搜索树的性质来查找。我们声明一个结点 cur ,从二叉树的根结点 root 出发,循环比较结点值 cur.valnum 之间的大小关系

  • cur.val < val ,说明目标结点在 cur 的右子树中,因此执行 cur = cur.right
  • cur.val > val ,说明目标结点在 cur 的左子树中,因此执行 cur = cur.left
  • cur.val = val ,说明找到目标结点,跳出循环并返回该结点即可;

=== "Step 1"

![bst_search_1](binary_search_tree.assets/bst_search_1.png)

=== "Step 2"

![bst_search_2](binary_search_tree.assets/bst_search_2.png)

=== "Step 3"

![bst_search_3](binary_search_tree.assets/bst_search_3.png)

=== "Step 4"

![bst_search_4](binary_search_tree.assets/bst_search_4.png)

二叉搜索树的查找操作和二分查找算法如出一辙,也是在每轮排除一半情况。循环次数最多为二叉树的高度,当二叉树平衡时,使用 O(\log n) 时间。

=== "Java"

```java title="binary_search_tree.java"
/* 查找结点 */
TreeNode search(int num) {
    TreeNode cur = root;
    // 循环查找,越过叶结点后跳出
    while (cur != null) {
        // 目标结点在 root 的右子树中
        if (cur.val < num) cur = cur.right;
        // 目标结点在 root 的左子树中
        else if (cur.val > num) cur = cur.left;
        // 找到目标结点,跳出循环
        else break;
    }
    // 返回目标结点
    return cur;
}
```

插入结点

给定一个待插入元素 num ,为了保持二叉搜索树 “左子树 < 根结点 < 右子树” 的性质,插入操作分为两步:

  1. 查找插入位置: 与查找操作类似,我们从根结点出发,根据当前节点值和 num 的大小关系循环向下搜索,直到越过叶结点(遍历到 \text{null} )时跳出循环;

  2. 在该位置插入结点: 初始化结点 num ,将该结点放到 \text{null} 的位置

二叉搜索树不允许存在重复节点,否则将会违背其定义。因此若待插入结点在树中已经存在,则不执行插入,直接返回即可。

bst_insert

=== "Java"

```java title="binary_search_tree.java"
/* 插入结点 */
TreeNode insert(int num) {
    // 若树为空,直接提前返回
    if (root == null) return null;
    TreeNode cur = root, pre = null;
    // 循环查找,越过叶结点后跳出
    while (cur != null) {
        // 找到重复结点,直接返回
        if (cur.val == num) return null;
        pre = cur;
        // 插入位置在 root 的右子树中
        if (cur.val < num) cur = cur.right;
        // 插入位置在 root 的左子树中
        else cur = cur.left;
    }
    // 插入结点 val
    TreeNode node = new TreeNode(num);
    if (pre.val < num) pre.right = node;
    else pre.left = node;
    return node;
}
```

为了插入结点,需要借助 辅助结点 prev 保存上一轮循环的结点,这样在遍历到 \text{null} 时,我们也可以获取到其父结点,从而完成结点插入操作。

与查找结点相同,插入结点使用 O(\log n) 时间。

删除结点

与插入结点一样,我们需要在删除操作后维持二叉搜索树的 “左子树 < 根结点 < 右子树” 的性质。首先,我们需要在二叉树中执行查找操作,获取待删除结点。接下来,根据待删除结点的子结点数量,删除操作需要分为三种情况:

待删除结点的子结点数量 = 0 表明待删除结点是叶结点,直接删除即可。

bst_remove_case1

待删除结点的子结点数量 = 1 将待删除结点替换为其子结点。

bst_remove_case2

待删除结点的子结点数量 = 2 删除操作分为三步:

  1. 找到待删除结点在 中序遍历序列 中的下一个结点,记为 nex
  2. 在树中递归删除结点 nex
  3. 使用 nex 替换待删除结点;

=== "Step 1"

![bst_remove_case3_1](binary_search_tree.assets/bst_remove_case3_1.png)

=== "Step 2"

![bst_remove_case3_2](binary_search_tree.assets/bst_remove_case3_2.png)

=== "Step 3"

![bst_remove_case3_3](binary_search_tree.assets/bst_remove_case3_3.png)

=== "Step 4"

![bst_remove_case3_4](binary_search_tree.assets/bst_remove_case3_4.png)

删除结点操作也使用 O(\log n) 时间,其中查找待删除结点 O(\log n) ,获取中序遍历后继结点 O(\log n)

=== "Java"

```java title="binary_search_tree.java"
/* 删除结点 */
TreeNode remove(int num) {
    // 若树为空,直接提前返回
    if (root == null) return null;
    TreeNode cur = root, pre = null;
    // 循环查找,越过叶结点后跳出
    while (cur != null) {
        // 找到待删除结点,跳出循环
        if (cur.val == num) break;
        pre = cur;
        // 待删除结点在 root 的右子树中
        if (cur.val < num) cur = cur.right;
        // 待删除结点在 root 的左子树中
        else cur = cur.left;
    }
    // 若无待删除结点,则直接返回
    if (cur == null) return null;
    // 子结点数量 = 0 or 1
    if (cur.left == null || cur.right == null) {
        // 当子结点数量 = 0 / 1 时, child = null / 该子结点
        TreeNode child = cur.left != null ? cur.left : cur.right;
        // 删除结点 cur
        if (pre.left == cur) pre.left = child;
        else pre.right = child;
    }
    // 子结点数量 = 2
    else {
        // 获取中序遍历中 cur 的下一个结点
        TreeNode nex = min(cur.right);
        int tmp = nex.val;
        // 递归删除结点 nex
        remove(nex.val);
        // 将 nex 的值复制给 cur
        cur.val = tmp;
    }
    return cur;
}
/* 获取最小结点 */
TreeNode min(TreeNode root) {
    if (root == null) return root;
    // 循环访问左子结点,直到叶结点时为最小结点,跳出
    while (root.left != null) {
        root = root.left;
    }
    return root;
}
```

二叉搜索树的优势

假设给定 n 个数字,最常用的存储方式是「数组」,那么对于这串乱序的数字,常见操作的效率为:

  • 查找元素: 由于数组是乱序的,因此需要遍历数组来确定,使用 O(n) 时间;
  • 插入元素: 只需将元素添加至数组尾部即可,使用 O(1) 时间;
  • 删除元素: 先查找元素,使用 O(\log n) 时间,再在数组中删除该元素,使用 O(n) 时间;
  • 获取最小 / 最大元素: 需要遍历数组来确定,使用 O(1) 时间;

为了得到先验信息,我们也可以预先将数组元素进行排序,得到一个「排序数组」,此时操作效率为:

  • 查找元素: 由于数组已排序,可以使用二分查找,使用 O(\log n) 时间;
  • 插入元素: 为了保持数组是有序的,需插入到数组某位置,平均使用 O(n) 时间;
  • 删除元素: 与乱序数组中的情况相同,使用 O(n) 时间;
  • 获取最小 / 最大元素: 数组头部和尾部元素即是最小和最大元素,使用 O(1) 时间;

观察发现,乱序数组和排序数组中的各类操作的时间复杂度是 “偏科” 的,即有的快有的慢;而二叉搜索树的各项操作的时间复杂度都是对数阶,在数据量 n 很大时有巨大优势

乱序数组 排序数组 二叉搜索树
查找指定元素 O(n) O(\log n) O(\log n)
插入元素 O(1) O(n) O(\log n)
删除元素 O(n) O(n) O(\log n)
获取最小 / 最大元素 O(n) O(1) O(\log n)

二叉搜索树的退化

二叉搜索树的理想状态是「完美二叉树」,我们称这样的二叉树是 “平衡” 的,此时可以在 \log n 轮循环内查找任意结点。

如果我们动态地在二叉搜索树中插入与删除结点,则可能导致二叉树退化为链表,此时各种操作的时间复杂度也退化之 O(n)

!!! note

在实际应用中,如何保持二叉搜索树的平衡,也是一个需要重要考虑的问题。

bst_degradation

二叉搜索树常见应用

  • 系统中的多级索引,高效查找、插入、删除操作。
  • 各种搜索算法的底层数据结构。
  • 存储数据流,保持其已排序。