hello-algo/docs/chapter_computational_complexity/space_time_tradeoff.md
2022-11-22 17:47:26 +08:00

2.5 KiB

权衡时间与空间

理想情况下,我们希望算法的时间复杂度和空间复杂度都能够达到最优,而实际上,同时优化时间复杂度和空间复杂度是非常困难的。

降低时间复杂度,往往是以提升空间复杂度为代价的,反之亦然。 我们把牺牲内存空间来提升算法运行速度的思路称为「以空间换时间」;反之,称之为「以时间换空间」。选择哪种思路取决于我们更看重哪个方面。大多数情况下,内存空间不会成为算法瓶颈,因此以空间换时间更加常用。

示例题目 *

以 LeetCode 全站第一题 两数之和 为例,「暴力枚举」和「辅助哈希表」分别为 空间最优时间最优 的两种解法。本着时间比空间更宝贵的原则,后者是本题的最佳解法。

方法一:暴力枚举

时间复杂度 O(N^2) ,空间复杂度 O(1) ,属于「时间换空间」。

虽然仅使用常数大小的额外空间,但运行速度过慢。

=== "Java"

```java title="" title="leetcode_two_sum.java"
public int[] twoSum(int[] nums, int target) {
    int size = nums.length;
    // 外层 * 内层循环,时间复杂度为 O(n)
    for (int i = 0; i < size - 1; i++) {
        for (int j = i + 1; j < size; j++) {
            if (nums[i] + nums[j] == target)
                return new int[] { i, j };
        }
    }
    return new int[0];
}
```

=== "C++"

```cpp title="leetcode_two_sum.cpp"

```

=== "Python"

```python title="leetcode_two_sum.py"

```

方法二:辅助哈希表

时间复杂度 O(N) ,空间复杂度 O(N) ,属于「空间换时间」。

借助辅助哈希表 dic ,通过保存数组元素与索引的映射来提升算法运行速度。

=== "Java"

```java title="" title="leetcode_two_sum.java"
public int[] twoSum(int[] nums, int target) {
    int size = nums.length;
    // 辅助哈希表,空间复杂度 O(n)
    Map<Integer, Integer> dic = new HashMap<>();
    // 单层循环,时间复杂度 O(n)
    for (int i = 0; i < size; i++) {
        if (dic.containsKey(target - nums[i])) {
            return new int[] { dic.get(target - nums[i]), i };
        }
        dic.put(nums[i], i);
    }
    return new int[0];
}
```

=== "C++"

```cpp title="leetcode_two_sum.cpp"

```

=== "Python"

```python title="leetcode_two_sum.py"

```