hello-algo/codes/java/chapter_tree/avl_tree.java
2022-12-11 02:44:48 +08:00

227 lines
7.1 KiB
Java
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* File: avl_tree.java
* Created Time: 2022-12-10
* Author: Krahets (krahets@163.com)
*/
package chapter_tree;
import include.*;
// Tree class
class AVLTree {
TreeNode root; // 根节点
/* 获取结点高度 */
public int height(TreeNode node) {
// 空结点高度为 -1 ,叶结点高度为 0
return node == null ? -1 : node.height;
}
/* 更新结点高度 */
private void updateHeight(TreeNode node) {
// 结点高度等于最高子树高度 + 1
node.height = Math.max(height(node.left), height(node.right)) + 1;
}
/* 获取平衡因子 */
public int balanceFactor(TreeNode node) {
// 空结点平衡因子为 0
if (node == null) return 0;
// 结点平衡因子 = 左子树高度 - 右子树高度
return height(node.left) - height(node.right);
}
/* 右旋操作 */
private TreeNode rightRotate(TreeNode node) {
TreeNode child = node.left;
TreeNode grandChild = child.right;
// 以 child 为原点,将 node 向右旋转
child.right = node;
node.left = grandChild;
// 更新结点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
/* 左旋操作 */
private TreeNode leftRotate(TreeNode node) {
TreeNode child = node.right;
TreeNode grandChild = child.left;
// 以 child 为原点,将 node 向左旋转
child.left = node;
node.right = grandChild;
// 更新结点高度
updateHeight(node);
updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
/* 执行旋转操作,使该子树重新恢复平衡 */
private TreeNode rotate(TreeNode node) {
// 获取结点 node 的平衡因子
int balanceFactor = balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (balanceFactor(node.left) >= 0) {
// 右旋
return rightRotate(node);
} else {
// 先左旋后右旋
node.left = leftRotate(node.left);
return rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (balanceFactor(node.right) <= 0) {
// 左旋
return leftRotate(node);
} else {
// 先右旋后左旋
node.right = rightRotate(node.right);
return leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
/* 插入结点 */
public TreeNode insert(int val) {
root = insertHelper(root, val);
return root;
}
/* 递归插入结点(辅助函数) */
private TreeNode insertHelper(TreeNode node, int val) {
if (node == null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val)
node.left = insertHelper(node.left, val);
else if (val > node.val)
node.right = insertHelper(node.right, val);
else
return node; // 重复结点不插入,直接返回
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}
/* 删除结点 */
public TreeNode remove(int val) {
root = removeHelper(root, val);
return root;
}
/* 递归删除结点(辅助函数) */
private TreeNode removeHelper(TreeNode node, int val) {
if (node == null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val)
node.left = removeHelper(node.left, val);
else if (val > node.val)
node.right = removeHelper(node.right, val);
else {
if (node.left == null || node.right == null) {
TreeNode child = node.left != null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child == null)
return null;
// 子结点数量 = 1 ,直接删除 node
else
node = child;
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
TreeNode temp = minNode(node.right);
node.right = removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = rotate(node);
// 返回子树的根节点
return node;
}
/* 获取最小结点 */
private TreeNode minNode(TreeNode node) {
if (node == null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left != null) {
node = node.left;
}
return node;
}
/* 查找结点 */
public TreeNode search(int val) {
TreeNode cur = root;
// 循环查找,越过叶结点后跳出
while (cur != null) {
// 目标结点在 root 的右子树中
if (cur.val < val)
cur = cur.right;
// 目标结点在 root 的左子树中
else if (cur.val > val)
cur = cur.left;
// 找到目标结点,跳出循环
else
break;
}
// 返回目标结点
return cur;
}
}
public class avl_tree {
static void testInsert(AVLTree tree, int val) {
tree.insert(val);
System.out.println("\n插入结点 " + val + "AVL 树为");
PrintUtil.printTree(tree.root);
}
static void testRemove(AVLTree tree, int val) {
tree.remove(val);
System.out.println("\n删除结点 " + val + "AVL 树为");
PrintUtil.printTree(tree.root);
}
public static void main(String[] args) {
/* 初始化空 AVL 树 */
AVLTree avlTree = new AVLTree();
/* 插入结点 */
// 请关注插入结点后AVL 树是如何保持平衡的
testInsert(avlTree, 1);
testInsert(avlTree, 2);
testInsert(avlTree, 3);
testInsert(avlTree, 4);
testInsert(avlTree, 5);
testInsert(avlTree, 8);
testInsert(avlTree, 7);
testInsert(avlTree, 9);
testInsert(avlTree, 10);
testInsert(avlTree, 6);
/* 插入重复结点 */
testInsert(avlTree, 7);
/* 删除结点 */
// 请关注删除结点后AVL 树是如何保持平衡的
testRemove(avlTree, 8); // 删除度为 0 的结点
testRemove(avlTree, 5); // 删除度为 1 的结点
testRemove(avlTree, 4); // 删除度为 2 的结点
/* 查询结点 */
TreeNode node = avlTree.search(7);
System.out.println("\n查找到的结点对象为 " + node + ",结点值 = " + node.val);
}
}