hello-algo/docs/chapter_sorting/bubble_sort.md
2022-12-01 18:28:57 +08:00

8.0 KiB
Raw Blame History

comments
true

冒泡排序

「冒泡排序 Bubble Sort」是一种最基础的排序算法非常适合作为第一个学习的排序算法。顾名思义「冒泡」是该算法的核心操作。

!!! tip "为什么叫 “冒泡”"

在水中,越大的泡泡浮力越大,所以最大的泡泡会最先浮到水面。

「冒泡」操作则是在模拟上述过程,具体做法为:从数组最左端开始向右遍历,依次对比相邻元素大小,若 左元素 > 右元素 则将它俩交换,最终可将最大元素移动至数组最右端。

完成此次冒泡操作后,数组最大元素已在正确位置,接下来只需排序剩余 n - 1 个元素

=== "Step 1"

![bubble_operation_step1](bubble_sort.assets/bubble_operation_step1.png)

=== "Step 2"

![bubble_operation_step2](bubble_sort.assets/bubble_operation_step2.png)

=== "Step 3"

![bubble_operation_step3](bubble_sort.assets/bubble_operation_step3.png)

=== "Step 4"

![bubble_operation_step4](bubble_sort.assets/bubble_operation_step4.png)

=== "Step 5"

![bubble_operation_step5](bubble_sort.assets/bubble_operation_step5.png)

=== "Step 6"

![bubble_operation_step6](bubble_sort.assets/bubble_operation_step6.png)

=== "Step 7"

![bubble_operation_step7](bubble_sort.assets/bubble_operation_step7.png)

Fig. 冒泡操作

算法流程

  1. 设数组长度为 n ,完成第一轮「冒泡」后,数组最大元素已在正确位置,接下来只需排序剩余 n - 1 个元素。
  2. 同理,对剩余 n - 1 个元素执行「冒泡」,可将第二大元素交换至正确位置,因而待排序元素只剩 n - 2 个。
  3. 以此类推…… 循环 n - 1 轮「冒泡」,即可完成整个数组的排序

bubble_sort

Fig. 冒泡排序流程

=== "Java"

```java title="bubble_sort.java"
/* 冒泡排序 */
void bubbleSort(int[] nums) {
    // 外循环:待排序元素数量为 n-1, n-2, ..., 1
    for (int i = nums.length - 1; i > 0; i--) {
        // 内循环:冒泡操作
        for (int j = 0; j < i; j++) {
            if (nums[j] > nums[j + 1]) {
                // 交换 nums[j] 与 nums[j + 1]
                int tmp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = tmp;
            }
        }
    }
}
```

=== "JavaScript"

```js title="bubble_sort.js"
/* 冒泡排序 */
function bubbleSort(nums) {
    // 外循环:待排序元素数量为 n-1, n-2, ..., 1
    for (let i = nums.length - 1; i > 0; i--) {
        // 内循环:冒泡操作
        for (let j = 0; j < i; j++) {
            if (nums[j] > nums[j + 1]) {
                // 交换 nums[j] 与 nums[j + 1]
                let tmp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = tmp;
            }
        }
    }
}
```

=== "C++"

```cpp title="bubble_sort.cpp"
/* 冒泡排序 */
void bubbleSort(vector<int>& nums) {
    // 外循环:待排序元素数量为 n-1, n-2, ..., 1
    for (int i = nums.size() - 1; i > 0; i--) {
        // 内循环:冒泡操作
        for (int j = 0; j < i; j++) {
            if (nums[j] > nums[j + 1]) {
                // 交换 nums[j] 与 nums[j + 1]
                int tmp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = tmp;
            }
        }
    }
}
```

=== "Python"

```python title="bubble_sort.py"
""" 冒泡排序 """
def bubble_sort(nums):
    n = len(nums)
    # 外循环:待排序元素数量为 n-1, n-2, ..., 1
    for i in range(n - 1, -1, -1):
        # 内循环:冒泡操作
        for j in range(i):
            if nums[j] > nums[j + 1]:
                # 交换 nums[j] 与 nums[j + 1]
                nums[j], nums[j + 1] = nums[j + 1], nums[j]
```

算法特性

时间复杂度 O(n^2) 各轮「冒泡」遍历的数组长度为 n - 1 , n - 2 , \cdots , 2 , 1 次,求和为 \frac{(n - 1) n}{2} ,因此使用 O(n^2) 时间。

空间复杂度 O(1) 指针 i , j 使用常数大小的额外空间。

原地排序: 指针变量仅使用常数大小额外空间。

稳定排序: 不交换相等元素。

自适排序: 引入 flag 优化后(见下文),最佳时间复杂度为 O(N)

效率优化

我们发现,若在某轮「冒泡」中未执行任何交换操作,则说明数组已经完成排序,可直接返回结果。考虑可以增加一个标志位 flag 来监听该情况,若出现则直接返回。

优化后,冒泡排序的最差和平均时间复杂度仍为 O(n^2) ;而在输入数组 已排序 时,达到 最佳时间复杂度 O(n)

=== "Java"

```java title="bubble_sort.java"
/* 冒泡排序(标志优化)*/
void bubbleSortWithFlag(int[] nums) {
    // 外循环:待排序元素数量为 n-1, n-2, ..., 1
    for (int i = nums.length - 1; i > 0; i--) {
        boolean flag = false; // 初始化标志位
        // 内循环:冒泡操作
        for (int j = 0; j < i; j++) {
            if (nums[j] > nums[j + 1]) {
                // 交换 nums[j] 与 nums[j + 1]
                int tmp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = tmp;
                flag = true;  // 记录交换元素
            }
        }
        if (!flag) break;     // 此轮冒泡未交换任何元素,直接跳出
    }
}
```

=== "JavaScript"

```js title="bubble_sort.js"
/* 冒泡排序(标志优化)*/
function bubbleSortWithFlag(nums) {
    // 外循环:待排序元素数量为 n-1, n-2, ..., 1
    for (let i = nums.length - 1; i > 0; i--) {
        let flag = false; // 初始化标志位
        // 内循环:冒泡操作
        for (let j = 0; j < i; j++) {
            if (nums[j] > nums[j + 1]) {
                // 交换 nums[j] 与 nums[j + 1]
                let tmp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = tmp;
                flag = true;  // 记录交换元素
            }
        }
        if (!flag) break;     // 此轮冒泡未交换任何元素,直接跳出
    }
}
```

=== "C++"

```cpp title="bubble_sort.cpp"
/* 冒泡排序(标志优化)*/
void bubbleSortWithFlag(vector<int>& nums) {
    // 外循环:待排序元素数量为 n-1, n-2, ..., 1
    for (int i = nums.size() - 1; i > 0; i--) {
        bool flag = false; // 初始化标志位
        // 内循环:冒泡操作
        for (int j = 0; j < i; j++) {
            if (nums[j] > nums[j + 1]) {
                // 交换 nums[j] 与 nums[j + 1]
                int tmp = nums[j];
                nums[j] = nums[j + 1];
                nums[j + 1] = tmp;
                flag = true;  // 记录交换元素
            }
        }
        if (!flag) break;     // 此轮冒泡未交换任何元素,直接跳出
    }
}
```

=== "Python"

```python title="bubble_sort.py"
""" 冒泡排序(标志优化) """
def bubble_sort_with_flag(nums):
    n = len(nums)
    # 外循环:待排序元素数量为 n-1, n-2, ..., 1
    for i in range(n - 1, -1, -1):
        flag = False  # 初始化标志位
        # 内循环:冒泡操作
        for j in range(i):
            if nums[j] > nums[j + 1]:
                # 交换 nums[j] 与 nums[j + 1]
                nums[j], nums[j + 1] = nums[j + 1], nums[j]
                flag = True  # 记录交换元素
        if not flag:
            break            # 此轮冒泡未交换任何元素,直接跳出
```