80 lines
2.5 KiB
Markdown
80 lines
2.5 KiB
Markdown
# 权衡时间与空间
|
||
|
||
理想情况下,我们希望算法的时间复杂度和空间复杂度都能够达到最优,而实际上,同时优化时间复杂度和空间复杂度是非常困难的。
|
||
|
||
**降低时间复杂度,往往是以提升空间复杂度为代价的,反之亦然。** 我们把牺牲内存空间来提升算法运行速度的思路称为「以空间换时间」;反之,称之为「以时间换空间」。选择哪种思路取决于我们更看重哪个方面。大多数情况下,内存空间不会成为算法瓶颈,因此以空间换时间更加常用。
|
||
|
||
## 示例题目 *
|
||
|
||
以 LeetCode 全站第一题 [两数之和](https://leetcode.cn/problems/two-sum/) 为例,「暴力枚举」和「辅助哈希表」分别为 **空间最优** 和 **时间最优** 的两种解法。本着时间比空间更宝贵的原则,后者是本题的最佳解法。
|
||
|
||
### 方法一:暴力枚举
|
||
|
||
时间复杂度 $O(N^2)$ ,空间复杂度 $O(1)$ ,属于「时间换空间」。
|
||
|
||
虽然仅使用常数大小的额外空间,但运行速度过慢。
|
||
|
||
=== "Java"
|
||
|
||
```java title="" title="leetcode_two_sum.java"
|
||
public int[] twoSum(int[] nums, int target) {
|
||
int size = nums.length;
|
||
// 外层 * 内层循环,时间复杂度为 O(n)
|
||
for (int i = 0; i < size - 1; i++) {
|
||
for (int j = i + 1; j < size; j++) {
|
||
if (nums[i] + nums[j] == target)
|
||
return new int[] { i, j };
|
||
}
|
||
}
|
||
return new int[0];
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="leetcode_two_sum.cpp"
|
||
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="leetcode_two_sum.py"
|
||
|
||
```
|
||
|
||
### 方法二:辅助哈希表
|
||
|
||
时间复杂度 $O(N)$ ,空间复杂度 $O(N)$ ,属于「空间换时间」。
|
||
|
||
借助辅助哈希表 dic ,通过保存数组元素与索引的映射来提升算法运行速度。
|
||
|
||
=== "Java"
|
||
|
||
```java title="" title="leetcode_two_sum.java"
|
||
public int[] twoSum(int[] nums, int target) {
|
||
int size = nums.length;
|
||
// 辅助哈希表,空间复杂度 O(n)
|
||
Map<Integer, Integer> dic = new HashMap<>();
|
||
// 单层循环,时间复杂度 O(n)
|
||
for (int i = 0; i < size; i++) {
|
||
if (dic.containsKey(target - nums[i])) {
|
||
return new int[] { dic.get(target - nums[i]), i };
|
||
}
|
||
dic.put(nums[i], i);
|
||
}
|
||
return new int[0];
|
||
}
|
||
```
|
||
|
||
=== "C++"
|
||
|
||
```cpp title="leetcode_two_sum.cpp"
|
||
|
||
```
|
||
|
||
=== "Python"
|
||
|
||
```python title="leetcode_two_sum.py"
|
||
|
||
```
|