5.8 KiB
leetcode 493 翻转对
如果阅读时,发现错误,或者动画不可以显示的问题可以添加我微信好友 tan45du_one ,备注 github + 题目 + 问题 向我反馈
感谢支持,该仓库会一直维护,希望对各位有一丢丢帮助。
另外希望手机阅读的同学可以来我的 公众号:程序厨 两个平台同步,想要和题友一起刷题,互相监督的同学,可以在我的小屋点击刷题小队进入。
题目描述
给定一个数组 nums ,如果 i < j 且 nums[i] > 2*nums[j] 我们就将 (i, j) 称作一个重要翻转对。
你需要返回给定数组中的重要翻转对的数量。
示例 1:
输入: [1,3,2,3,1] 输出: 2
示例 2:
输入: [2,4,3,5,1] 输出: 3
题目解析
我们理解了逆序对的含义之后,题目理解起来完全没有压力的,这个题目第一想法可能就是用暴力法解决,但是会超时,所以我们有没有办法利用归并排序来完成呢?
我们继续回顾一下归并排序的归并过程,两个小集合是有序的,然后我们需要将小集合归并到大集合中,则我们完全可以在归并之前,先统计一下翻转对的个数,然后再进行归并,则最后排序完成之后自然也就得出了翻转对的个数。具体过程见下图。
此时我们发现 6 > 2 * 2,所以此时是符合情况的,因为小数组是单调递增的,所以 6 后面的元素都符合条件,所以我们 count += mid - temp1 + 1;则我们需要移动紫色指针,判断后面是否还存在符合条件的情况。
我们此时发现 6 = 3 * 2,不符合情况,因为小数组都是完全有序的,所以我们可以移动红色指针,看下后面的数有没有符合条件的情况。这样我们就可以得到翻转对的数目啦。下面我们直接看动图加深下印象吧!
是不是很容易理解啊,那我们直接看代码吧,仅仅是在归并排序的基础上加了几行代码。
Java Code:
class Solution {
private int count;
public int reversePairs(int[] nums) {
count = 0;
merge(nums, 0, nums.length - 1);
return count;
}
public void merge(int[] nums, int left, int right) {
if (left < right) {
int mid = left + ((right - left) >> 1);
merge(nums, left, mid);
merge(nums, mid + 1, right);
mergeSort(nums, left, mid, right);
}
}
public void mergeSort(int[] nums, int left, int mid, int right) {
int[] temparr = new int[right - left + 1];
int temp1 = left, temp2 = mid + 1, index = 0;
//计算翻转对
while (temp1 <= mid && temp2 <= right) {
//这里需要防止溢出
if (nums[temp1] > 2 * (long) nums[temp2]) {
count += mid - temp1 + 1;
temp2++;
} else {
temp1++;
}
}
//记得归位,我们还要继续使用
temp1 = left;
temp2 = mid + 1;
//归并排序
while (temp1 <= mid && temp2 <= right) {
if (nums[temp1] <= nums[temp2]) {
temparr[index++] = nums[temp1++];
} else {
temparr[index++] = nums[temp2++];
}
}
//照旧
if (temp1 <= mid) System.arraycopy(nums, temp1, temparr, index, mid - temp1 + 1);
if (temp2 <= right) System.arraycopy(nums, temp2, temparr, index, right - temp2 + 1);
System.arraycopy(temparr, 0, nums, left, right - left + 1);
}
}
Python Code:
from typing import List
class Solution:
count = 0
def reversePairs(self, nums: List[int])->int:
self.count = 0
self.merge(nums, 0, len(nums) - 1)
return self.count
def merge(self, nums: List[int], left: int, right: int):
if left < right:
mid = left + ((right - left) >> 1)
self.merge(nums, left, mid)
self.merge(nums, mid + 1, right)
self.mergeSort(nums, left, mid, right)
def mergeSort(self, nums: List[int], left: int, mid: int, right: int):
temparr = [0] * (right - left + 1)
temp1 = left
temp2 = mid + 1
index = 0
while temp1 <= mid and temp2 <= right:
# 这里需要防止溢出
if nums[temp1] > 2 * nums[temp2]:
self.count += mid - temp1 + 1
temp2 += 1
else:
temp1 += 1
# 记得归位,我们还要继续使用
temp1 = left
temp2 = mid + 1
# 归并排序
while temp1 <= mid and temp2 <= right:
if nums[temp1] <= nums[temp2]:
temparr[index] = nums[temp1]
index += 1
temp1 += 1
else:
temparr[index] = nums[temp2]
index += 1
temp2 += 1
# 照旧
if temp1 <= mid:
temparr[index: index + mid - temp1 + 1] = nums[temp1: temp1 + mid - temp1 + 1]
if temp2 <= right:
temparr[index: index + right - temp2 + 1] = nums[temp2: temp2 + right - temp2 + 1]
nums[left: left + right- left + 1] = temparr[0: right - left + 1]