Add quick sort.
This commit is contained in:
@@ -4,21 +4,21 @@ comments: true
|
||||
|
||||
# 插入排序
|
||||
|
||||
顾名思义,「插入排序 Insertion Sort」是一种基于 **数组插入操作** 的排序算法。
|
||||
「插入排序 Insertion Sort」是一种基于 **数组插入操作** 的排序算法。
|
||||
|
||||
「插入操作」思想:选定数组的某个元素 `base` ,将 `base` 与其左边的元素依次对比大小,并 “插入” 到正确位置。
|
||||
「插入操作」的思想:选定数组的某个元素为基准数 `base` ,将 `base` 与其左边的元素依次对比大小,并 “插入” 到正确位置。
|
||||
|
||||
然而,由于数组元素是连续的,因此我们无法直接把 `base` 插入到目标位置,而是需要把从正确位置到 `base` 之间的所有元素向右移动一位。
|
||||
然而,由于数组在内存中的存储方式是连续的,我们无法直接把 `base` 插入到目标位置,而是需要将从目标位置到 `base` 之间的所有元素向右移动一位(本质上是一次数组插入操作)。
|
||||
|
||||

|
||||
|
||||
## 算法流程
|
||||
|
||||
第 1 轮先选取数组的 **第 2 个元素** 为 `base` ,执行「插入操作」后, **数组前 2 个元素已完成排序**。
|
||||
1. 第 1 轮先选取数组的 **第 2 个元素** 为 `base` ,执行「插入操作」后, **数组前 2 个元素已完成排序**。
|
||||
|
||||
第 2 轮选取 **第 3 个元素** 为 `base` ,执行「插入操作」后, **数组前 3 个元素已完成排序**。
|
||||
2. 第 2 轮选取 **第 3 个元素** 为 `base` ,执行「插入操作」后, **数组前 3 个元素已完成排序**。
|
||||
|
||||
以此类推……最后一轮选取 **数组尾元素** 为 `base` ,执行「插入操作」后 **所有元素已完成排序**。
|
||||
3. 以此类推……最后一轮选取 **数组尾元素** 为 `base` ,执行「插入操作」后 **所有元素已完成排序**。
|
||||
|
||||

|
||||
|
||||
@@ -40,9 +40,9 @@ comments: true
|
||||
}
|
||||
```
|
||||
|
||||
## 算法分析
|
||||
## 算法特性
|
||||
|
||||
**时间复杂度 $O(n^2)$ :** 各轮插入操作最多循环 $n - 1$ , $n-2$ , $\cdots$ , $2$ , $1$ 次,求和为 $\frac{(n - 1) n}{2}$ ,使用 $O(n^2)$ 时间。
|
||||
**时间复杂度 $O(n^2)$ :** 最差情况下,各轮插入操作循环 $n - 1$ , $n-2$ , $\cdots$ , $2$ , $1$ 次,求和为 $\frac{(n - 1) n}{2}$ ,使用 $O(n^2)$ 时间。
|
||||
|
||||
**空间复杂度 $O(1)$ :** 指针 $i$ , $j$ 使用常数大小的额外空间。
|
||||
|
||||
@@ -66,6 +66,3 @@ comments: true
|
||||
- 对于 **短数组**,直接使用「插入排序」,时间复杂度为 $O(n^2)$ ;
|
||||
|
||||
在数组较短时,复杂度中的常数项(即每轮中的单元操作数量)占主导作用,此时插入排序运行地更快。这个现象与「线性查找」和「二分查找」的情况类似。
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user