algorithm-base/animation-simulation/二叉树/二叉树中序遍历.md
2021-06-28 18:58:22 +08:00

6.1 KiB
Raw Blame History

哈喽大家好,我是厨子,之前我们说了二叉树前序遍历的迭代法和 Morris今天咱们写一下中序遍历的迭代法和 Morris。

注:数据结构掌握不熟练的同学,阅读该文章之前,可以先阅读这两篇文章,二叉树基础,前序遍历另外喜欢电脑阅读的同学,可以在小屋后台回复仓库地址,获取 Github 链接进行阅读。

中序遍历的顺序是, 对于树中的某节点,先遍历该节点的左子树, 然后再遍历该节点, 最后遍历其右子树。老规矩,上动画,我们先通过动画回忆一下二叉树的中序遍历。

中序遍历

注:二叉树基础总结大家可以阅读这篇文章,点我。

迭代法

我们二叉树的中序遍历迭代法和前序遍历是一样的,都是借助栈来帮助我们完成。

我们结合动画思考一下,该如何借助栈来实现呢?

我们来看下面这个动画。

在这里插入图片描述

用栈实现的二叉树的中序遍历有两个关键的地方。

  • 指针不断向节点的左孩子移动,为了找到我们当前需要遍历的节点。途中不断执行入栈操作
  • 当指针为空时,则开始出栈,并将指针指向出栈节点的右孩子。

这两个关键点也很容易理解,指针不断向左孩子移动,是为了找到我们此时需要节点。然后当指针指向空时,则说明我们此时已经找到该节点,执行出栈操作,并将其值存入 list 即可,另外我们需要将指针指向出栈节点的右孩子,迭代执行上诉操作。

大家是不是已经知道怎么写啦,下面我们看代码吧。

class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer> arr = new ArrayList<>();
        TreeNode cur = new TreeNode(-1);
        cur = root;
        Stack<TreeNode> stack = new Stack<>();
        while (!stack.isEmpty() || cur != null) {   
               //找到当前应该遍历的那个节点
               while (cur != null) {
                 stack.push(cur);
                 cur = cur.left;
               }
               //此时指针指向空,也就是没有左子节点,则开始执行出栈操作
               TreeNode temp = stack.pop();
               arr.add(temp.val);
               //指向右子节点
               cur = temp.right;
        }
        return arr;
    } 
}

Morris

我们之前说过,前序遍历的 Morris 方法,如果已经掌握,今天中序遍历的 Morris 方法也就没有什么难度,仅仅修改了一丢丢。

我们先来回顾一下前序遍历 Morris 方法的代码部分。

前序遍历 Morris 代码

class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {

        List<Integer> list = new ArrayList<>();
        if (root == null) {
            return list;
        }
        TreeNode p1 = root; TreeNode p2 = null;
        while (p1 != null) {
            p2 = p1.left;
            if (p2 != null) {
                //找到左子树的最右叶子节点
                while (p2.right != null && p2.right != p1) {
                    p2 = p2.right;
                }
                //添加 right 指针,对应 right 指针为 null 的情况
                //标注 1
                if (p2.right == null) {
                    list.add(p1.val);
                    p2.right = p1;
                    p1 = p1.left;
                    continue;
                }
                //对应 right 指针存在的情况,则去掉 right 指针
                p2.right = null;
                //标注2
            } else {            
                list.add(p1.val);
            }
            //移动 p1
            p1 = p1.right;
        }
        return list;
    }
}

我们先来看标注 1 的部分,这里的含义是,当找到 p1 指向节点的左子树中的最右子节点时。也就是下图中的情况,此时我们需要将 p1 指向的节点值,存入 list。

image

上述为前序遍历时的情况,那么中序遍历应该如何操作嘞。

前序遍历我们需要移动 p1 指针,p1 = p1.left 这样做的原因和上述迭代法原理一致,找到我们当前需要遍历的那个节点。

我们还需要修改哪里呢?见下图

我们在前序遍历时,遇到 p2.right == p1的情况时,则会执行 p2.right == null 并让 p1 = p1.right,这样做是因为,我们此时 p1 指向的值已经遍历完毕,为了防止重复遍历。

但是呢,在我们的中序 Morris 中我们遇到p2.right == p1此时 p1 还未遍历,所以我们需要在上面两条代码之间添加一行代码list.add(p1.val);

好啦,到这里我们就基本上就搞定了中序遍历的 Morris 方法,下面我们通过动画来加深一下印象吧,当然我也会把前序遍历的动画放在这里,大家可以看一下哪里有所不同。

二叉树中序

二叉树前序Morris

参考代码:

//中序 Morris
class Solution {
    public List<Integer> inorderTraversal(TreeNode root) {
        List<Integer>  list = new ArrayList<Integer>();
        if (root == null) {
            return list;
        }
        TreeNode p1 = root;
        TreeNode p2 = null;
        while (p1 != null) {
            p2  = p1.left;
            if (p2 != null) {
                while (p2.right != null && p2.right != p1) {
                    p2 = p2.right;
                }
                if (p2.right == null) {
                    p2.right = p1;
                    p1 = p1.left;
                    continue;                   
                } else {
                    p2.right  = null;
                }
            }
            list.add(p1.val);
            p1 = p1.right;
        }
        return list;
    }
}